Alzheimer's disease (AD) is a complex neurodegenerative disorder that develops over decades. AD brain proteomics reveals vast alterations in protein levels and numerous altered biologic pathways. Here, we compare AD brain proteome and network changes with the brain proteomes of amyloid β (Aβ)-depositing mice to identify conserved and divergent protein networks with the conserved networks identifying an Aβ amyloid responsome.
View Article and Find Full Text PDFWe report a highly significant correlation in brain proteome changes between Alzheimers disease (AD) and CRND8 APP695NL/F transgenic mice. However, integrating protein changes observed in the CRND8 mice with co-expression networks derived from human AD, reveals both conserved and divergent module changes. For the most highly conserved module (M42, matrisome) we find many proteins accumulate in plaques, cerebrovascular amyloid (CAA), dystrophic processes, or a combination thereof.
View Article and Find Full Text PDFAggregation and accumulation of amyloid-β (Aβ) is a defining feature of Alzheimer's disease pathology. To study microglial responses to Aβ, we applied exogenous Aβ peptide, in either oligomeric or fibrillar conformation, to primary mouse microglial cultures and evaluated system-level transcriptional changes and then compared these with transcriptomic changes in the brains of CRND8 APP mice. We find that primary microglial cultures have rapid and massive transcriptional change in response to Aβ.
View Article and Find Full Text PDFIntroduction: Passive immunotherapies targeting Aβ continue to be evaluated as Alzheimer's disease (AD) therapeutics, but there remains debate over the mechanisms by which these immunotherapies work. Besides the amount of preexisting Aβ deposition and the type of deposit (compact or diffuse), there is little data concerning what factors, independent of those intrinsic to the antibody, might influence efficacy. Here we (i) explored how constitutive priming of the underlying innate activation states by Il10 and Il6 might influence passive Aβ immunotherapy and (ii) evaluated transcriptomic data generated in the AMP-AD initiative to inform how these two cytokines and their receptors' mRNA levels are altered in human AD and an APP mouse model.
View Article and Find Full Text PDFBackground: γ-Secretase is a multiprotein protease that cleaves amyloid protein precursor (APP) and other type I transmembrane proteins. It has two catalytic subunits, presenilins 1 and 2 (PS1 and 2). In our previous report, we observed subtle differences in PS1- and PS2-mediated cleavages of select substrates and slightly different potencies of PS1 versus PS2 inhibition for select γ-secretase inhibitors (GSIs) on various substrates.
View Article and Find Full Text PDFCardiac contractility is enhanced by phosphorylation of myosin light chain 2 (MLC2) by cardiac-specific MLC kinase (cMLCK), located at the neck region of myosin heavy chain. In normal mouse and human hearts, the level of phosphorylation is maintained relatively constant, at around 30-40% of total MLC2, likely by well-balanced phosphorylation and phosphatase-dependent dephosphorylation. Overexpression of cMLCK promotes sarcomere organization, while the loss of cMLCK leads to cardiac atrophy in vitro and in vivo.
View Article and Find Full Text PDFHypothalamic-pituitary-adrenal (HPA) axis dysfunction contributes to numerous human diseases and disorders. We developed a high-affinity monoclonal antibody, CTRND05, targeting corticotropin-releasing factor (CRF). In mice, CTRND05 blocks stress-induced corticosterone increases, counteracts effects of chronic variable stress, and induces other phenotypes consistent with suppression of the HPA axis.
View Article and Find Full Text PDFPresenilins 1 and 2 (PS1 and 2) are the catalytic subunits of γ-secretase, a multiprotein protease that cleaves amyloid protein precursor and other type I transmembrane proteins. Previous studies with mouse models or cells have indicated differences in PS1 and PS2 functions. We have recently reported that clinical γ-secretase inhibitors (GSIs), initially developed to manage Alzheimer's disease and now being considered for other therapeutic interventions, are both pharmacologically and functionally distinct.
View Article and Find Full Text PDFAmyloid precursor protein (APP) and its metabolites play key roles in Alzheimer's disease (AD) pathophysiology. Whereas short amyloid-β (Aβ) peptides derived from APP are pathogenic, the APP holoprotein serves multiple purposes in the nervous system through its cell adhesion and receptor-like properties. Our studies focused on the signaling mediated by the APP cytoplasmic tail.
View Article and Find Full Text PDFRare coding variants in the triggering receptor expressed on myeloid cells 2 (TREM2) are associated with increased risk for Alzheimer's disease (AD), but how they confer this risk remains uncertain. We assessed binding of TREM2, AD-associated TREM2 variants to various forms of Aβ and APOE in multiple assays. TREM2 interacts directly with various forms of Aβ, with highest affinity interactions observed between TREM2 and soluble Aβ42 oligomers.
View Article and Find Full Text PDFPhosphorylation of the microtubule associated protein tau is an important modulator of its normal physiological functioning; however, it may also contribute to tau mis-folding and aggregation in neurodegenerative diseases, which are collectively termed tauopathies. As such, the investigations of tau phosphorylation and kinases that modify tau are important in trying to elucidate tau function and the mechanisms involved in the development of tauopathies. We have recently demonstrated that the putative tau kinase leucine-rich repeat kinase 2 is capable of phosphorylating tau at threonines 169 and 175 in vitro, and it has been previously shown that hyperphosphorylation at threonine 175 occurs in filamentous tau species from Alzheimer's brain tissue.
View Article and Find Full Text PDFThere is considerable interest in harnessing innate immunity to treat Alzheimer's disease (AD). Here, we explore whether a decoy receptor strategy using the ectodomain of select TLRs has therapeutic potential in AD. AAV-mediated expression of human TLR5 ectodomain (sTLR5) alone or fused to human IgG4 Fc (sTLR5Fc) results in robust attenuation of amyloid β (Aβ) accumulation in a mouse model of Alzheimer-type Aβ pathology.
View Article and Find Full Text PDFProcessing of amyloid-β (Aβ) precursor protein (APP) by γ-secretase produces multiple species of Aβ: Aβ40, short Aβ peptides (Aβ37-39), and longer Aβ peptides (Aβ42-43). γ-Secretase modulators, a class of Alzheimer's disease therapeutics, reduce production of the pathogenic Aβ42 but increase the relative abundance of short Aβ peptides. To evaluate the pathological relevance of these peptides, we expressed Aβ36-40 and Aβ42-43 in to evaluate inherent toxicity and potential modulatory effects on Aβ42 toxicity.
View Article and Find Full Text PDFBackground: Parkinson's disease (PD) is a progressive neurodegenerative disorder that is pathologically characterized by loss of dopaminergic neurons from the substantia nigra, the presence of aggregated α-synuclein (αS) and evidence of neuroinflammation. Experimental studies have shown that the cerebral injection of recombinant fibrillar αS, especially in αS transgenic mouse models, can induce the formation and spread of αS inclusion pathology. However, studies reporting this phenomenon did not consider the presence of lipopolysaccharide (LPS) in the injected αS, produced in E.
View Article and Find Full Text PDFBackground: Amyloid-β (Aβ) 42 has been implicated as the initiating molecule in the pathogenesis of Alzheimer's disease (AD); thus, therapeutic strategies that target Aβ42 are of great interest. γ-Secretase modulators (GSMs) are small molecules that selectively decrease Aβ42. We have previously reported that many acidic steroids are GSMs with potencies ranging in the low to mid micromolar concentration with 5β-cholanic acid being the most potent steroid identified GSM with half maximal effective concentration (EC50) of 5.
View Article and Find Full Text PDFAltered production of β-amyloid (Aβ) from the amyloid precursor protein (APP) is closely associated with Alzheimer's disease (AD). APP has a number of homo- and hetero-dimerizing domains, and studies have suggested that dimerization of β-secretase derived APP carboxyl terminal fragment (CTFβ, C99) impairs processive cleavage by γ-secretase increasing production of long Aβs (e.g.
View Article and Find Full Text PDFγ-Secretase catalyzes the final cleavage of the amyloid precursor protein (APP), resulting in the production of amyloid-β (Aβ) peptides with different carboxyl termini. Presenilin (PSEN) and amyloid precursor protein (APP) mutations linked to early onset familial Alzheimer's disease modify the profile of Aβ isoforms generated, by altering both the initial γ-secretase cleavage site and subsequent processivity in a manner that leads to increased levels of the more amyloidogenic Aβ42 and in some circumstances Aβ43. Compounds termed γ-secretase modulators (GSMs) and inverse GSMs (iGSMs) can decrease and increase levels of Aβ42, respectively.
View Article and Find Full Text PDFUnderstanding how different species of Aβ are generated by γ-secretase cleavage has broad therapeutic implications, because shifts in γ-secretase processing that increase the relative production of Aβx-42/43 can initiate a pathological cascade, resulting in Alzheimer disease. We have explored the sequential stepwise γ-secretase cleavage model in cells. Eighteen BRI2-Aβ fusion protein expression constructs designed to generate peptides from Aβ1-38 to Aβ1-55 and C99 (CTFβ) were transfected into cells, and Aβ production was assessed.
View Article and Find Full Text PDFAggregation and accumulation of Aβ42 play an initiating role in Alzheimer's disease (AD); thus, selective lowering of Aβ42 by γ-secretase modulators (GSMs) remains a promising approach to AD therapy. Based on evidence suggesting that steroids may influence Aβ production, we screened 170 steroids at 10 μM for effects on Aβ42 secreted from human APP-overexpressing Chinese hamster ovary cells. Many acidic steroids lowered Aβ42, whereas many nonacidic steroids actually raised Aβ42.
View Article and Find Full Text PDFInspired by marine cyanobacterial natural products, we synthesized modified peptides with a central statine-core unit, characteristic for aspartic protease inhibition. A series of tasiamide B analogues inhibited BACE1, a therapeutic target in Alzheimer's disease. We probed the stereospecificity of target engagement and determined additional structure-activity relationships with respect to BACE1 and related aspartic proteases, cathepsins D and E.
View Article and Find Full Text PDFBackground: Aβ production is influenced by intracellular trafficking of secretases and amyloid precursor protein (APP).
Results: Retention in endoplasmic reticulum 1 (RER1) regulates the trafficking of γ-secretase and APP, thereby influences Aβ production.
Conclusion: RER1, an ER retention/retrieval factor for γ-secretase and APP, modulates Aβ production.
γ-Secretase is a multiprotein intramembrane cleaving aspartyl protease (I-CLiP) that catalyzes the final cleavage of the amyloid β precursor protein (APP) to release the amyloid β peptide (Aβ). Aβ is the primary component of senile plaques in Alzheimer's disease (AD), and its mechanism of production has been studied intensely. γ-Secretase executes multiple cleavages within the transmembrane domain of APP, with cleavages producing Aβ and the APP intracellular domain (AICD), referred to as γ and ε, respectively.
View Article and Find Full Text PDFSelective lowering of Abeta42 levels (the 42-residue isoform of the amyloid-beta peptide) with small-molecule gamma-secretase modulators (GSMs), such as some non-steroidal anti-inflammatory drugs, is a promising therapeutic approach for Alzheimer's disease. To identify the target of these agents we developed biotinylated photoactivatable GSMs. GSM photoprobes did not label the core proteins of the gamma-secretase complex, but instead labelled the beta-amyloid precursor protein (APP), APP carboxy-terminal fragments and amyloid-beta peptide in human neuroglioma H4 cells.
View Article and Find Full Text PDFProteolytic processing of the amyloid precursor protein by beta- and gamma-secretase generates the amyloid-beta (Abeta) peptides, which are principal drug targets in Alzheimer disease therapeutics. gamma-Secretase has imprecise cleavage specificity and generates the most abundant Abeta40 and Abeta42 species together with longer and shorter peptides such as Abeta38. Several mechanisms could explain the production of multiple Abeta peptides by gamma-secretase, including sequential processing of longer into shorter Abeta peptides.
View Article and Find Full Text PDF