We develop a new method for estimating effective population sizes, Ne, and selection coefficients, s, from time-series data of allele frequencies sampled from a single diallelic locus. The method is based on calculating transition probabilities, using a numerical solution of the diffusion process, and assuming independent binomial sampling from this diffusion process at each time point. We apply the method in two example applications.
View Article and Find Full Text PDFDomesticated Asian rice (Oryza sativa) is one of the oldest domesticated crop species in the world, having fed more people than any other plant in human history. We report the patterns of DNA sequence variation in rice and its wild ancestor, O. rufipogon, across 111 randomly chosen gene fragments, and use these to infer the evolutionary dynamics that led to the origins of rice.
View Article and Find Full Text PDFBackground: We develop a Bayesian method based on MCMC for estimating the relative rates of pericentric and paracentric inversions from marker data from two species. The method also allows estimation of the distribution of inversion tract lengths.
Results: We apply the method to data from Drosophila melanogaster and D.
There has recently been increased interest in the use of Markov Chain Monte Carlo (MCMC)-based Bayesian methods for estimating genetic maps. The advantage of these methods is that they can deal accurately with missing data and genotyping errors. Here we present an extension of the previous methods that makes the Bayesian method applicable to large data sets.
View Article and Find Full Text PDFComparative genome analysis is a powerful tool that can facilitate the reconstruction of the evolutionary history of the genomes of modern-day species. The model plant Arabidopsis thaliana with its n = 5 genome is thought to be derived from an ancestral n = 8 genome. Pairwise comparative genome analyses of A.
View Article and Find Full Text PDFWe present a Bayesian approach to the problem of inferring the number of inversions and translocations separating two species. The main reason for developing this method is that it will allow us to test hypotheses about the underlying mechanisms, such as the distribution of inversion track lengths or rate constancy among lineages. Here, we apply these methods to comparative maps of eggplant and tomato, human and cat, and human and cattle with 170, 269, and 422 markers, respectively.
View Article and Find Full Text PDFWe present a Bayesian approach to the problem of inferring the history of inversions separating homologous chromosomes from two different species. The method is based on Markov Chain Monte Carlo (MCMC) and takes full advantage of all the information from marker order. We apply the method both to simulated data and to two real data sets.
View Article and Find Full Text PDF