In 2019, The EAT-Lancet Commission developed criteria to assist policymakers and health care systems worldwide in sustaining natural resources to feed a forecasted 10 billion people through the year 2050. Although American dietary habits and underlying food production practices have a disproportionately negative impact on land, greenhouse gas (GHG), and water resources, there is limited information on how this population can meet the EAT-Lancet criteria. To address this, we measured adherence to an adapted version of the EAT-Lancet diet score criteria in United States (U.
View Article and Find Full Text PDFThe globally recognized need to advance more sustainable agriculture and food systems has motivated the emergence of transdisciplinary solutions, which include methodologies that utilize the properties of materials at the nanoscale to address extensive and inefficient resource use. Despite the promising prospects of these nanoscale materials, the potential for large-scale applications directly to the environment and to crops necessitates precautionary measures to avoid unintended consequences. Further, the effects of using engineered nanomaterials (ENMs) in agricultural practices cascade throughout their life cycle and include effects from upstream-embodied resources and emissions from ENM production as well as their potential downstream environmental implications.
View Article and Find Full Text PDFEngineered nanomaterials (ENMs) and ENM-enabled products have emerged as potentially high-performance replacements to conventional materials and chemicals. As such, there is an urgent need to incorporate environmental and human health objectives into ENM selection and design processes. Here, an adapted framework based on the Ashby material selection strategy is presented as an enhanced selection and design process, which includes functional performance as well as environmental and human health considerations.
View Article and Find Full Text PDFSilver was utilized throughout history to prevent the growth of bacteria in food and wounds. Recently, nanoscale silver has been applied to consumer textiles (nAg-textiles) to eliminate the prevalence of odor-causing bacteria. In turn, it is proposed that consumers will launder these items less frequently thus, reducing the life cycle impacts.
View Article and Find Full Text PDFThe attenuation of arsenic in groundwater near alkaline coal fly ash disposal facilities was evaluated by determining the uptake of arsenic from ash leachates by surrounding alkaline soils. Ten different alkaline soils near a retired coal fly ash impoundment were used in this study with pH ranging from 7.6 to 9.
View Article and Find Full Text PDFEnviron Sci Technol
December 2009
Sustainability science suggests that effective environmental protection requires an integrated systems approach.
View Article and Find Full Text PDFA comparative life cycle assessment examining soybean and petroleum-based lubricants is compiled using Monte Carlo analysis to assess system variability. Experimental data obtained from an aluminum manufacturing facility indicate significantly less soybean lubricant is required to achieve similar or superior performance. With improved performance and a lower use rate, a transition to soybean oil results in lower aggregate impacts of acidification, smog formation, and human health from criteria pollutants.
View Article and Find Full Text PDFEnviron Sci Technol
February 2007
Biobased product life cycle assessments (LCAs) have focused largely on energy (fossil fuel) usage and greenhouse gas emissions during the agriculture and production stages. This paper compiles a more comprehensive life cycle inventory (LCI) for use in future bioproduct LCAs that rely on corn or soybean crops as feedstocks. The inventory includes energy, C, N, P, major pesticides, and U.
View Article and Find Full Text PDFEnviron Sci Technol
April 2006
Intensive agricultural systems are largely responsible for the increase in global reactive nitrogen compounds, which are associated with significant environmental impacts. The nitrogen cycle in agricultural systems is complex and highly variable, which complicates characterization in environmental assessments. Appropriately representing nitrogen inputs into an ecosystem is essential to better understand and predict environmental impacts, such as the extent of seasonally occurring hypoxic zones.
View Article and Find Full Text PDFResults are presented that explore the possibility of organocyanide compounds in wastewater contributing to elevated cyanide levels in the chlorinated effluents of publicly owned treatment works. Four model compounds, acetonitrile, amygdalin, cyanocobalamin, and 2-acetoxy-3-butenenitrile, were selected and tested with varying chlorine dosages for release of cyanide by total and diffusible cyanide procedures. The coenzyme form of vitamin B12, which does not contain cyanide, was also tested.
View Article and Find Full Text PDF