The century-long Michaelis-Menten rate law and its modifications in the modeling of biochemical rate processes stand on the assumption that the concentration of the complex of interacting molecules, at each moment, rapidly approaches an equilibrium (quasi-steady state) compared to the pace of molecular concentration changes. Yet, in the case of actively time-varying molecular concentrations with transient or oscillatory dynamics, the deviation of the complex profile from the quasi-steady state becomes relevant. A recent theoretical approach, known as the effective time-delay scheme (ETS), suggests that the delay from the relaxation time of molecular complex formation contributes to the substantial breakdown of the quasi-steady state assumption.
View Article and Find Full Text PDFThe Michaelis-Menten (MM) rate law has been the dominant paradigm of modeling biochemical rate processes for over a century with applications in biochemistry, biophysics, cell biology, systems biology, and chemical engineering. The MM rate law and its remedied form stand on the assumption that the concentration of the complex of interacting molecules, at each moment, approaches an equilibrium (quasi-steady state) much faster than the molecular concentrations change. Yet, this assumption is not always justified.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFThe role of our gut microbiota in health and disease is largely attributed to the collective metabolic activities of the inhabitant microbes. A system-level framework of the microbial community structure, mediated through metabolite transport, would provide important insights into the complex microbe-microbe and host-microbe chemical interactions. This framework, if adaptable to both mouse and human systems, would be useful for mechanistic interpretations of the vast amounts of experimental data from gut microbiomes in murine animal models, whether humanized or not.
View Article and Find Full Text PDF