Publications by authors named "Thomas L Kelly"

Muscle mass and strength are crucial for physiological function and performance in athletes, playing a significant role in maintaining health and optimal athletic performance. Skeletal muscle, which constitutes the majority of lean soft tissue (LST) and appendicular lean soft tissue (ALST) when measured by dual-energy X-ray absorptiometry (DXA), represents a commonly used surrogate for strength. Research has investigated alternative measures of body composition, such as the assessment of ALST through bioelectrical impedance analysis (BIA) and the determination of whole-body muscle mass from creatine pool size using the deuterated creatine (DCr) dilution method, for their associations to strength.

View Article and Find Full Text PDF

Background: The Sarcopenia Definitions and Outcomes Consortium (SDOC) sought to identify cut points for muscle strength and body composition measures derived from dual-energy x-ray absorptiometry (DXA) that discriminate older adults with slow walking speed. This article presents the core analyses used to guide the SDOC position statements.

Design: Cross-sectional data analyses of pooled data.

View Article and Find Full Text PDF

Background: The 4-component (4C) model is a criterion method for human body composition that separates the body into fat, water, mineral, and protein, but requires 4 measurements with significant cost and time requirements that preclude wide clinical use. A simplified model integrating only 2 measurements-dual-energy X-ray absorptiometry (DXA) and bioelectrical impedance analysis (BIA)-and 10 min of patient time has been proposed.

Objective: We aimed to validate a rapid, simplified 4C DXA + BIA body composition model in a clinical population.

View Article and Find Full Text PDF

Objective: To test a newly developed dual energy X-ray absorptiometry (DXA) method for abdominal fat depot quantification in subjects with anorexia nervosa (AN), normal weight, and obesity using CT as a gold standard.

Design And Methods: 135 premenopausal women (overweight/obese: n = 89, normal-weight: n = 27, AN: n = 19); abdominal visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), and total adipose tissue (TAT) areas determined on CT and DXA.

Results: There were strong correlations between DXA and CT measurements of abdominal fat compartments in all groups with the strongest correlation coefficients in the normal-weight and overweight/obese groups.

View Article and Find Full Text PDF

Visceral adipose tissue (VAT) is associated with adverse health effects including cardiovascular disease and type 2 diabetes. We developed a dual-energy X-ray absorptiometry (DXA) measurement of visceral adipose tissue (DXA-VAT) as a low cost and low radiation alternative to computed tomography (CT). DXA-VAT was compared to VAT assessed using CT by an expert reader (E-VAT).

View Article and Find Full Text PDF

In 2008 the National Center for Health Statistics released a dual energy x-ray absorptiometry (DXA) whole body dataset from the NHANES population-based sample acquired with modern fan beam scanners in 15 counties across the United States from 1999 through 2004. The NHANES dataset was partitioned by gender and ethnicity and DXA whole body measures of %fat, fat mass/height(2), lean mass/height(2), appendicular lean mass/height(2), %fat trunk/%fat legs ratio, trunk/limb fat mass ratio of fat, bone mineral content (BMC) and bone mineral density (BMD) were analyzed to provide reference values for subjects 8 to 85 years old. DXA reference values for adults were normalized to age; reference values for children included total and sub-total whole body results and were normalized to age, height, or lean mass.

View Article and Find Full Text PDF