Bunyaviruses are enveloped negative or ambisense single-stranded RNA viruses with a genome divided into several segments. The canonical view depicts each viral particle packaging one copy of each genomic segment in one polarity named the viral strand. Several opposing observations revealed nonequal ratios of the segments, uneven number of segments per virion, and even packaging of viral complementary strands.
View Article and Find Full Text PDFMol Plant Microbe Interact
March 2020
The plant viruses in the phylum , orders and , have common features of single-stranded, negative-sense RNA genomes and replication in the biological vector. Due to the similarities in biology, comparative functional analysis in plant and vector hosts is helpful for understanding host-virus interactions for negative-strand RNA viruses. In this review, we will highlight recent technological advances that are breaking new ground in the study of these recalcitrant virus systems.
View Article and Find Full Text PDFVector-borne viruses are a threat to human, animal, and plant health worldwide, requiring the development of novel strategies for their control. Tomato spotted wilt virus (TSWV) is one of the 10 most economically significant plant viruses and, together with other tospoviruses, is a threat to global food security. TSWV is transmitted by thrips, including the western flower thrips, Frankliniella occidentalis.
View Article and Find Full Text PDFTomato spotted wilt virus (TSWV) is transmitted in a persistent propagative manner by Frankliniella occidentalis, the western flower thrips. While it is well established that vector competence depends on TSWV acquisition by young larvae and virus replication within the insect, the biological factors associated with frequency of transmission have not been well characterized. We hypothesized that the number of transmission events by a single adult thrips is determined, in part, by the amount of virus harbored (titer) by the insect.
View Article and Find Full Text PDFABSTRACT The ambisense RNA genome of Tomato spotted wilt virus (TSWV) isby interaction with numerous copies of the virus encoded nucleocapsid (N) protein to form a subvirion structure called a ribonucleo-protein (RNP). RNPs are central to the viral replication cycle because they, and not free viral RNA, serve as templates for viral gene expression and genome replication. N protein monomers bind to viral RNA molecules in a cooperative manner.
View Article and Find Full Text PDFBackground: Potato virus X has been developed into an expression vector for plants. It is widely used to express foreign genes. In molecular manipulation, the foreign genes need to be sub-cloned into the vector.
View Article and Find Full Text PDFWe applied real-time RT-PCR to the analysis of Tobacco rattle virus (TRV)-mediated virus-induced gene silencing (VIGS) of the phytoene desaturase (PDS) gene in Nicotiana benthamiana and tomato. Using a combination of direct measurement and mathematical assessment, we evaluated three plant genes, ubiquitin (ubi3), elongation factor-1 alpha (EF-1), and actin, for use as internal reference transcripts and found that EF-1 and ubi3 were least variable under our experimental conditions. Primer sets designed to amplify the 5' or 3' regions of endogenous PDS transcripts in tomato yielded similar reductions in transcript levels indicating a uniform VIGS-mediated degradation of target RNA.
View Article and Find Full Text PDFThe complex and specific interplay between thrips, tospoviruses, and their shared plant hosts leads to outbreaks of crop disease epidemics of economic and social importance. The precise details of the processes underpinning the vector-virus-host interaction and their coordinated evolution increase our understanding of the general principles underlying pathogen transmission by insects, which in turn can be exploited to develop sustainable strategies for controlling the spread of the virus through plant populations. In this review, we focus primarily on recent progress toward understanding the biological processes and molecular interactions involved in the acquisition and transmission of Tospoviruses by their thrips vectors.
View Article and Find Full Text PDFTomato spotted wilt virus (TSWV) is a plant-infecting member of the family Bunyaviridae. TSWV encodes two envelope glycoproteins, G(N) and G(C), which are required for virus infection of the arthropod vector. Other members of the Bunyaviridae enter host cells by pH-dependent endocytosis.
View Article and Find Full Text PDFTomato spotted wilt virus (TSWV), a member of the Tospovirus genus within the Bunyaviridae, is an economically important plant pathogen with a worldwide distribution. TSWV is transmitted to plants via thrips (Thysanoptera: Thripidae), which transmit the virus in a persistent propagative manner. The envelope glycoproteins, G(N) and G(C), are critical for the infection of thrips, but they are not required for the initial infection of plants.
View Article and Find Full Text PDFWe have previously described an in vitro assay for RNA-dependent RNA polymerase activity in virions of tomato spotted wilt virus (TSWV). Here we report antibody inhibition of virion-associated RNA synthesis in vitro with an L-protein-specific polyclonal antibody raised against the carboxy-terminus of the L protein. In contrast, RNA synthesis was not inhibited by a heterologous antiserum and was unaffected by antiserum raised against an internal portion of the L protein.
View Article and Find Full Text PDF