Flight control requires active sensory feedback, and insects have many sensors that help them estimate their current locomotor state, including campaniform sensilla, which are mechanoreceptors that sense strain resulting from deformation of the cuticle. Campaniform sensilla on the wing detect bending and torsional forces encountered during flight, providing input to the flight feedback control system. During flight, wings experience complex spatio-temporal strain patterns.
View Article and Find Full Text PDFSensory feedback is essential to both animals and robotic systems for achieving coordinated, precise movements. Mechanosensory feedback, which provides information about body deformation, depends not only on the properties of sensors but also on the structure in which they are embedded. In insects, wing structure plays a particularly important role in flapping flight: in addition to generating aerodynamic forces, wings provide mechanosensory feedback necessary for guiding flight while undergoing dramatic deformations during each wingbeat.
View Article and Find Full Text PDFHow does neural activity drive muscles to produce behavior? The recent development of genetic lines in that allow complete calcium imaging of both neuronal and muscle activity, as well as systematic machine learning quantification of behaviors, makes this small cnidarian an ideal model system to understand and model the complete transformation from neural firing to body movements. To achieve this, we have built a neuromechanical model of 's fluid-filled hydrostatic skeleton, showing how drive by neuronal activity activates distinct patterns of muscle activity and body column biomechanics. Our model is based on experimental measurements of neuronal and muscle activity and assumes gap junctional coupling among muscle cells and calcium-dependent force generation by muscles.
View Article and Find Full Text PDFResearch on insect flight control has focused primarily on the role of wings. Yet abdominal deflections during flight can potentially influence the dynamics of flight. This paper assesses the role of airframe deformations in flight, and asks to what extent the abdomen contributes to flight maneuverability.
View Article and Find Full Text PDFInsect flight is a strongly nonlinear and actuated dynamical system. As such, strategies for understanding its control have typically relied on either model-based methods or linearizations thereof. Here we develop a framework that combines model predictive control on an established flight dynamics model and deep neural networks (DNN) to create an efficient method for solving the inverse problem of flight control.
View Article and Find Full Text PDFPlants cover a large fraction of the Earth's land mass despite most species having limited to no mobility. To transport their propagules, many plants have evolved mechanisms to disperse their seeds using the wind. A dandelion seed, for example, has a bristly filament structure that decreases its terminal velocity and helps orient the seed as it wafts to the ground.
View Article and Find Full Text PDFNocturnal insects like moths are essential for pollination, providing resilience to the diurnal pollination networks. Moths use both vision and mechanosensation to locate the nectary opening in the flowers with their proboscis. However, increased light levels due to artificial light at night (ALAN) pose a serious threat to nocturnal insects.
View Article and Find Full Text PDFDuring muscle contraction, myosin motors anchored to thick filaments bind to and slide actin thin filaments. These motors rely on energy derived from ATP, supplied, in part, by diffusion from the sarcoplasm to the interior of the lattice of actin and myosin filaments. The radial spacing of filaments in this lattice may change or remain constant during contraction.
View Article and Find Full Text PDFAnimals rely on sensory feedback to generate accurate, reliable movements. In many flying insects, strain-sensitive neurons on the wings provide rapid feedback that is critical for stable flight control. While the impacts of wing structure on aerodynamic performance have been widely studied, the impacts of wing structure on sensing are largely unexplored.
View Article and Find Full Text PDFA highly organized and densely packed lattice of molecular machinery within the sarcomeres of muscle cells powers contraction. Although many of the proteins that drive contraction have been studied extensively, the mechanical impact of fluid shearing within the lattice of molecular machinery has received minimal attention. It was recently proposed that fluid flow augments substrate transport in the sarcomere, however, this analysis used analytical models of fluid flow in the molecular machinery that could not capture its full complexity.
View Article and Find Full Text PDFTwo groundbreaking papers published in 1954 laid out the theory of the mechanism of muscle contraction based on force-generating interactions between myofilaments in the sarcomere that cause filaments to slide past one another during muscle contraction. The succeeding decades of research in muscle physiology have revealed a unifying interest: to understand the multiscale processes-from atom to organ-that govern muscle function. Such an understanding would have profound consequences for a vast array of applications, from developing new biomimetic technologies to treating heart disease.
View Article and Find Full Text PDFThe interaction between insects and the flowers they pollinate has driven the evolutionary diversity of both insects and flowering plants, two groups with the most numerous species on Earth. Insects use vision and olfaction to localize host plants, but we know relatively little about how they find the tiny nectary opening in the flower, which can be well beyond their visual resolution. Especially when vision is limited, touch becomes crucial in successful insect-plant pollination interactions.
View Article and Find Full Text PDFBiohybrid systems integrate living materials with synthetic devices, exploiting their respective advantages to solve challenging engineering problems. One challenge of critical importance to society is detecting and localizing airborne volatile chemicals. Many flying animals depend their ability to detect and locate the source of aerial chemical plumes for finding mates and food sources.
View Article and Find Full Text PDFMuscle function within an organism depends on the feedback between molecular and meter-scale processes. Although the motions of muscle's contractile machinery are well described in isolated preparations, only a handful of experiments have documented the kinematics of the lattice occurring when multi-scale interactions are fully intact. We used time-resolved X-ray diffraction to record the kinematics of the myofilament lattice within a normal operating context: the tethered flight of As the primary flight muscles of are synchronous, we used these results to reveal the timing of cross-bridge recruitment, which occurred 24 ms (s.
View Article and Find Full Text PDFThe obligate mutualism and exquisite specificity of many plant-pollinator interactions lead to the expectation that flower phenotypes (e.g., corolla tube length) and corresponding pollinator traits (e.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2018
Sparse sensor placement is a central challenge in the efficient characterization of complex systems when the cost of acquiring and processing data is high. Leading sparse sensing methods typically exploit either spatial or temporal correlations, but rarely both. This work introduces a sparse sensor optimization that is designed to leverage the rich spatiotemporal coherence exhibited by many systems.
View Article and Find Full Text PDFIn striated muscle, the giant protein titin spans the entire length of a half-sarcomere and extends from the backbone of the thick filament, reversibly attaches to the thin filaments, and anchors to the dense protein network of the z-disk capping the end of the half-sarcomere. However, little is known about the relationship between the basic mechanical properties of titin and muscle contractility. Here, we build upon our previous multi-filament, spatially explicit computational model of the half-sarcomere by incorporating the nonlinear mechanics of titin filaments in the I-band.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2016
The acquisition of information from parallel sensory pathways is a hallmark of coordinated movement in animals. Insect flight, for example, relies on both mechanosensory and visual pathways. Our challenge is to disentangle the relative contribution of each modality to the control of behavior.
View Article and Find Full Text PDFAnimals must operate under an enormous range of light intensities. Nocturnal and twilight flying insects are hypothesized to compensate for dim conditions by integrating light over longer times. This slowing of visual processing would increase light sensitivity but should also reduce movement response times.
View Article and Find Full Text PDFWhat are the features of movement encoded by changing motor commands? Do motor commands encode movement independently or can they be represented in a reduced set of signals (i.e. synergies)? Motor encoding poses a computational and practical challenge because many muscles typically drive movement, and simultaneous electrophysiology recordings of all motor commands are typically not available.
View Article and Find Full Text PDFAntennal mechanosensors play a key role in control and stability of insect flight. In addition to the well-established role of antennae as airflow detectors, recent studies have indicated that the sensing of antennal vibrations by Johnston's organs also provides a mechanosensory feedback relevant for flight stabilization. However, few studies have addressed how the individual units, or scolopidia, of the Johnston's organs encode these antennal vibrations and communicate it to the brain.
View Article and Find Full Text PDFControl theory arose from a need to control synthetic systems. From regulating steam engines to tuning radios to devices capable of autonomous movement, it provided a formal mathematical basis for understanding the role of feedback in the stability (or change) of dynamical systems. It provides a framework for understanding any system with regulation via feedback, including biological ones such as regulatory gene networks, cellular metabolic systems, sensorimotor dynamics of moving animals, and even ecological or evolutionary dynamics of organisms and populations.
View Article and Find Full Text PDFFlying insects rapidly stabilize after perturbations using both visual and mechanosensory inputs for active control. Insect halteres are mechanosensory organs that encode inertial forces to aid rapid course correction during flight but serve no aerodynamic role and are specific to two orders of insects (Diptera and Strepsiptera). Aside from the literature on halteres and recent work on the antennae of the hawkmoth Manduca sexta, it is unclear how other flying insects use mechanosensory information to control body dynamics.
View Article and Find Full Text PDFClassic interpretations of the striated muscle length-tension curve focus on how force varies with overlap of thin (actin) and thick (myosin) filaments. New models of sarcomere geometry and experiments with skinned synchronous insect flight muscle suggest that changes in the radial distance between the actin and myosin filaments, the filament lattice spacing, are responsible for between 20% and 50% of the change in force seen between sarcomere lengths of 1.4 and 3.
View Article and Find Full Text PDFMoving animals orchestrate myriad motor systems in response to multimodal sensory inputs. Coordinating movement is particularly challenging in flight control, where animals deal with potential instability and multiple degrees of freedom of movement. Prior studies have focused on wings as the primary flight control structures, for which changes in angle of attack or shape are used to modulate lift and drag forces.
View Article and Find Full Text PDF