Publications by authors named "Thomas Kueper"

Background: The study was aimed to evaluate the anti-inflammatory activity of ethanolic and aqueous extracts of Polygonum minus (Huds) using in vitro and in vivo approaches.

Methods: The in vitro tests used to evaluate ethanolic extract are cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), lipooxygenase (5-LOX), secretory phospholipase-A2 (sPLA2) inhibition assay whilst the in-vivo effect was measured by the ability of aqueous extracts to reduce paw edema induced by λ-carrageenan, in rats.

Results: The ethanolic extract inhibited the activities of 5-LOX and COX-1(p < 0.

View Article and Find Full Text PDF

Changes in mechanical properties are an essential characteristic of the aging process of human skin. Previous studies attribute these changes predominantly to the altered collagen and elastin organization and density of the extracellular matrix. Here, we show that individual dermal fibroblasts also exhibit a significant increase in stiffness during aging in vivo.

View Article and Find Full Text PDF

Changes in mechanical properties are an essential characteristic of the aging process of human skin. Previous studies attribute these changes predominantly to the altered collagen and elastin organization and density of the extracellular matrix. Here, we show that individual dermal fibroblasts also exhibit a significant increase in stiffness during aging in vivo.

View Article and Find Full Text PDF

During the past years, the topic sensitive skin became one of the most important fields in dermatology. The tremendous interest is based on several studies showing that about 50% of the population declares to have sensitive skin. The human thermoreceptor hTRPV1 was previously identified to contribute to this skin condition while facilitating neurogenic inflammation leading to hyperalgesia.

View Article and Find Full Text PDF

In a recent study, we were able to show that the intermediate filament protein vimentin aggregates in human dermal fibroblasts because of modification by the advanced glycation endproduct carboxymethyllysine (CML). In this work, we investigated the formation of intracellular CML in relation to the concentration of glucose in the culture medium. The natural degradation product of glucose, methylglyoxal, was able to induce the aggregation of vimentin.

View Article and Find Full Text PDF

The creatine kinase (CK) system is essential for cellular energetics in tissues or cells with high and fluctuating energy requirements. Creatine itself is known to protect cells from stress-induced injury. By using an siRNA approach to silence the CK isoenzymes in human keratinocyte HaCaT cells, expressing low levels of cytoplasmic CK and high levels of mitochondrial CK, as well as HeLa cancer cells, expressing high levels of cytoplasmic CK and low levels of mitochondrial CK, we successfully lowered the respective CK expression levels and studied the effects of either abolishing cytosolic brain-type BB-CK or ubiquitous mitochondrial uMi-CK in these cells.

View Article and Find Full Text PDF

Until now, the glycation reaction was considered to be a nonspecific reaction between reducing sugars and amino groups of random proteins. We were able to identify the intermediate filament vimentin as the major target for the AGE modification N(epsilon)-(carboxymethyl)lysine (CML) in primary human fibroblasts. This glycation of vimentin is neither based on a slow turnover of this protein nor on an extremely high intracellular expression level, but remarkably it is based on structural properties of this protein.

View Article and Find Full Text PDF