Publications by authors named "Thomas Kuen"

This study presents a novel approach for monitoring waste substrate digestion under high-density polyethylene (HDPE) geomembranes in sewage treatment plants. The method integrates infrared thermal imaging with a clustering algorithm to predict the distribution of various substrates beneath Traditional outdoor large-scale opaque geomembranes, using solar radiation as an excitation source. The technique leverages ambient weather conditions to assess the thermal responses of HDPE covers.

View Article and Find Full Text PDF

This paper presents an overview of integrating new research outcomes into the development of a structural health monitoring strategy for the floating cover at the Western Treatment Plant (WTP) in Melbourne, Australia. The size of this floating cover, which covers an area of approximately 470 m × 200 m, combined with the hazardous environment and its exposure to extreme weather conditions, only allows for monitoring techniques based on remote sensing. The floating cover is deformed by the accumulation of sewage matter beneath it.

View Article and Find Full Text PDF

This study aims to enhance diagnostic capabilities for optimising the performance of the anaerobic sewage treatment lagoon at Melbourne Water's Western Treatment Plant (WTP) through a novel machine learning (ML)-based monitoring strategy. This strategy employs ML to make accurate probabilistic predictions of biogas performance by leveraging diverse real-life operational and inspection sensor and other measurement data for asset management, decision making, and structural health monitoring (SHM). The paper commences with data analysis and preprocessing of complex irregular datasets to facilitate efficient learning in an artificial neural network.

View Article and Find Full Text PDF

High-density polyethylene geomembranes are employed as covers for the sewage treatment lagoons at Melbourne Water Corporation's Western Treatment Plant, to harvest the biogas produced during anaerobic degradation, which is then used to generate electricity. Due to its size, inspecting the cover for defects, particularly subsurface defects, can be challenging, as well as the potential for the underside of the membrane to come into contact with different substrates, viz. liquid sewage, scum (consolidated solid matter), and biogas.

View Article and Find Full Text PDF

Floating covers used in waste water treatment plants are one of the many structures formed with membrane materials. These structures are usually large and can spread over an area measuring 470 m × 170 m. The aim of this paper is to describe recent work to develop an innovative and effective approach for structural health monitoring (SHM) of such large membrane-like infrastructure.

View Article and Find Full Text PDF