Spaceborne measurements by NASA's Orbiting Carbon Observatory-2 (OCO-2) at the kilometer scale reveal distinct structures of atmospheric carbon dioxide (CO) caused by known anthropogenic and natural point sources. OCO-2 transects across the Los Angeles megacity (USA) show that anthropogenic CO enhancements peak over the urban core and decrease through suburban areas to rural background values more than ~100 kilometers away, varying seasonally from ~4.4 to 6.
View Article and Find Full Text PDFMethane (CH4) impacts climate as the second strongest anthropogenic greenhouse gas and air quality by influencing tropospheric ozone levels. Space-based observations have identified the Four Corners region in the Southwest United States as an area of large CH4 enhancements. We conducted an airborne campaign in Four Corners during April 2015 with the next-generation Airborne Visible/Infrared Imaging Spectrometer (near-infrared) and Hyperspectral Thermal Emission Spectrometer (thermal infrared) imaging spectrometers to better understand the source of methane by measuring methane plumes at 1- to 3-m spatial resolution.
View Article and Find Full Text PDFAppl Radiat Isot
July 2012
Radioactive waste must be characterized in order to verify its conformance with national regulations for intermediate storage or its disposal. Segmented gamma scanning (SGS) is a most widely applied non-destructive analytical technique for the characterization of radioactive waste drums. The isotope specific activity content is generally calculated assuming a homogeneous matrix and activity distribution for each measured drum segment.
View Article and Find Full Text PDFThis work improves the reliability and accuracy in the reconstruction of the total isotope activity content in heterogeneous nuclear waste drums containing point sources. The method is based on χ(2)-fits of the angular dependent count rate distribution measured during a drum rotation in segmented gamma scanning. A new description of the analytical calculation of the angular count rate distribution is introduced based on a more precise model of the collimated detector.
View Article and Find Full Text PDF