Publications by authors named "Thomas Knura"

The bactericidal effects of silver nanoparticles (Ag NPs) against infectious strains of multiresistant bacteria is a well-studied phenomenon, highly relevant for many researchers and clinicians battling bacterial infections. However, little is known about the uptake of the Ag NPs into the bacteria, the related uptake mechanisms, and how they are connected to antimicrobial activity. Even less information is available on AgAu alloy NPs uptake.

View Article and Find Full Text PDF

Many research areas, e.g., basic research but also applied fields of biotechnology, biomedicine, and diagnostics often suffer from the unavailability of metabolic compounds.

View Article and Find Full Text PDF

Pyruvate decarboxylase (PDC) is a key enzyme involved in ethanol fermentation, and it catalyzes the decarboxylation of pyruvate to acetaldehyde and CO. Bifunctional PORs/PDCs that also have additional pyruvate:ferredoxin oxidoreductase (POR) activity are found in hyperthermophiles, and they are mostly oxygen-sensitive and CoA-dependent. Thermostable and oxygen-stable PDC activity is highly desirable for biotechnological applications.

View Article and Find Full Text PDF

Triosephophate isomerase (TIM) is a dimeric enzyme in eucarya, bacteria and mesophilic archaea. In hyperthermophilic archaea, however, TIM exists as a tetramer composed of monomers that are about 10% shorter than other eucaryal and bacterial TIM monomers. We report here the crystal structure of TIM from Thermoproteus tenax, a hyperthermophilic archaeon that has an optimum growth temperature of 86 degrees C.

View Article and Find Full Text PDF

The non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) of the hyperthermophilic Archaeum Thermoproteus tenax is a member of the superfamily of aldehyde dehydrogenases (ALDH). GAPN catalyses the irreversible oxidation of glyceraldehyde 3-phosphate (GAP) to 3-phosphoglycerate in the modified glycolytic pathway of this organism. In contrast to other members of the ALDH superfamily, GAPN from T.

View Article and Find Full Text PDF

Fructose-1,6-bisphosphate aldolase (FBPA) catalyzes the reversible cleavage of fructose 1,6-bisphosphate to glyceraldehyde 3-phosphate and dihydroxyacetone phosphate in the glycolytic pathway. FBPAs from archaeal organisms have recently been identified and characterized as a divergent family of proteins. Here, we report the first crystal structure of an archaeal FBPA at 1.

View Article and Find Full Text PDF