Introduction: The aggressive search for renewable energy resources and essential pyrosynthetic compounds has marked an exponential rise in the thermal degradation of biomass materials. Consequently, clean and sustainable transport fuels are increasingly desirable in a highly industrialized economy, for energy security and environmental protection. For this reason, biomass materials have been identified as promising alternatives to fossil fuels despite the challenges resulting from the possible formation of toxic nitrogen-based molecules during biomass degradation.
View Article and Find Full Text PDFBackground: Research inventories on the co-pyrolysis of major biomass components such as cellulose with amino acid materials is scarce in literature despite the fact that such studies are critical in understanding toxic product relations from high temperature cooking, combustion of bio-fuels, cigarette smoking and forest fires. This paper explores, quantitatively, the yields of heterocyclic nitrogenated molecular reaction products of grave mutagenetic concern from the co-pyrolysis of model biomass materials; tyrosine and cellulose. Research has established that heterocyclic amines such as isocyanates are mutagens as well precursors for asthma, and other respiratory disorders.
View Article and Find Full Text PDFBackground: Tobacco smoke is a toxic gas-phase cocktail consisting of a broad range of organics, and free radical intermediates. The formation of smoke from a burning cigarette depends on a series of mechanisms, including generation of products by pyrolysis and combustion, aerosol formation, and physical mass transfer processes.
Methods: The current study simulates the deposition of particulate matter on the human lung surface by trapping the tobacco smoke particulates in situ on silica gel.