The biocompatibility of materials used in electronic devices is critical for the development of implantable devices like pacemakers and neuroprosthetics, as well as in future biomanufacturing. Biocompatibility refers to the ability of these materials to interact with living cells and tissues without causing an adverse response. Therefore, it is essential to evaluate the biocompatibility of metals and semiconductor materials used in electronic devices to ensure their safe use in medical applications.
View Article and Find Full Text PDFThe leptomeninges envelop the central nervous system (CNS) and contribute to cerebrospinal fluid (CSF) production and homeostasis. We analyzed the meninges overlying the anterior or posterior forebrain in the adult mouse by single nuclear RNA-sequencing (snucRNA-seq). This revealed regional differences in fibroblast and endothelial cell composition and gene expression.
View Article and Find Full Text PDFBackground: Immune cells play crucial roles after spinal cord injury (SCI). However, incomplete knowledge of immune contributions to injury and repair hinders development of SCI therapies. We leveraged single-cell observations to describe key populations of immune cells present in the spinal cord and changes in their transcriptional profiles from uninjured to subacute and chronic stages of SCI.
View Article and Find Full Text PDFSTAU2 is a double-stranded RNA-binding protein enriched in the nervous system. During asymmetric divisions in the developing mouse cortex, STAU2 preferentially distributes into the intermediate progenitor cell (IPC), delivering RNA molecules that can impact IPC behavior. Corticogenesis occurs on a precise time schedule, raising the hypothesis that the cargo STAU2 delivers into IPCs changes over time.
View Article and Find Full Text PDFEpithelial to mesenchymal transition (EMT) is a biological process involved in tissue morphogenesis and disease that causes dramatic changes in cell morphology, migration, proliferation, and gene expression. The retinal pigment epithelium (RPE), which supports the neural retina, can undergo EMT, producing fibrous epiretinal membranes (ERMs) associated with vision-impairing clinical conditions, such as macular pucker and proliferative vitreoretinopathy (PVR). We found that co-treatment with TGF-β and TNF-α (TNT) accelerates EMT in adult human RPE stem cell-derived RPE cell cultures.
View Article and Find Full Text PDFIncreased understanding of developmental disorders of the brain has shown that genetic mutations, environmental toxins and biological insults typically act during developmental windows of susceptibility. Identifying these vulnerable periods is a necessary and vital step for safeguarding women and their fetuses against disease causing agents during pregnancy and for developing timely interventions and treatments for neurodevelopmental disorders. We analyzed developmental time-course gene expression data derived from human pluripotent stem cells, with disease association, pathway, and protein interaction databases to identify windows of disease susceptibility during development and the time periods for productive interventions.
View Article and Find Full Text PDFNeural stem cell activity in the ventricular-subventricular zone (V-SVZ) decreases with aging, thought to occur by a unidirectional decline. However, by analyzing the V-SVZ transcriptome of male mice at 2, 6, 18, and 22 months, we found that most of the genes that change significantly over time show a reversal of trend, with a maximum or minimum expression at 18 months. In vivo, MASH1 progenitor cells decreased in number and proliferation between 2 and 18 months but increased between 18 and 22 months.
View Article and Find Full Text PDFAge-related macular degeneration (AMD) affects the retinal pigment epithelium (RPE), a cell monolayer essential for photoreceptor survival, and is the leading cause of vision loss in the elderly. There are no disease-altering therapies for dry AMD, which is characterized by accumulation of subretinal drusen deposits and complement-driven inflammation. We report the derivation of human-induced pluripotent stem cells (hiPSCs) from patients with diagnosed AMD, including two donors with the rare ARMS2/HTRA1 homozygous genotype.
View Article and Find Full Text PDFBig Data is no longer solely the purview of big organizations with big resources. Today's routine tools and experimental methods can generate large slices of data. For example, high-throughput sequencing can quickly interrogate biological systems for the expression levels of thousands of different RNAs, examine epigenetic marks throughout the genome, and detect differences in the genomes of individuals.
View Article and Find Full Text PDFPurpose: Numerous preclinical studies have shown that transplantation of stem cell-derived retinal pigment epithelial cell (RPE) preserves photoreceptor cell anatomy in the dystrophic Royal College of Surgeons (RCS) rat. How rescue is spatially distributed over the eye, relative to the transplantation site, is less clear. To understand spatial variations in transplant efficacy, we have developed a method to measure the spatial distribution of rescued photoreceptor cells.
View Article and Find Full Text PDFMany neurological and psychiatric disorders affect the cerebral cortex, and a clearer understanding of the molecular processes underlying human corticogenesis will provide greater insight into such pathologies. To date, knowledge of gene expression changes accompanying corticogenesis is largely based on murine data. Here we present a searchable, comprehensive, temporal gene expression data set encompassing cerebral cortical development from human embryonic stem cells (hESCs).
View Article and Find Full Text PDFCultured mammalian cells [e.g., murine hybridomas, Chinese hamster ovary (CHO) cells] used to produce therapeutic and diagnostic proteins often exhibit increased specific productivity under osmotic stress.
View Article and Find Full Text PDFThe rapidly expanding market for monoclonal antibody and Fc-fusion-protein therapeutics has increased interest in improving the productivity of mammalian cell lines, both to alleviate capacity limitations and control the cost of goods. In this study, we evaluated the responses of an industrial CHO cell line producing an Fc-fusion-protein to hyperosmotic stress, a well-known productivity enhancer, and compared them with our previous studies of murine hybridomas (Shen and Sharfstein, Biotechnol Bioeng. 2006;93:132-145).
View Article and Find Full Text PDFMotivation: To be valuable to biological or biomedical research, in silico methods must be scaled to complex pathways and large numbers of interacting molecular species. The correct method for performing such simulations, discrete event simulation by Monte Carlo generation, is computationally costly for large complex systems. Approximation of molecular behavior by continuous models fails to capture stochastic behavior that is essential to many biological phenomena.
View Article and Find Full Text PDF