Publications by authors named "Thomas Kickenweiz"

The original version of this Article was updated after publication to add the ORCID ID of the author Thomas Vogl, which was inadvertently omitted, and to include a corrected version of the 'Description of Additional Supplementary Files' which originally lacked legends for each file.

View Article and Find Full Text PDF

Numerous synthetic biology endeavors require well-tuned co-expression of functional components for success. Classically, monodirectional promoters (MDPs) have been used for such applications, but MDPs are limited in terms of multi-gene co-expression capabilities. Consequently, there is a pressing need for new tools with improved flexibility in terms of genetic circuit design, metabolic pathway assembly, and optimization.

View Article and Find Full Text PDF

Cellulose is a highly available and renewable carbon source in nature. However, it cannot be directly metabolized by most microbes including Komagataella phaffii (formerly Pichia pastoris), which is a frequently employed host for heterologous protein expression and production of high-value compounds. A K.

View Article and Find Full Text PDF

The heterologous expression of biosynthetic pathways for pharmaceutical or fine chemical production requires suitable expression hosts and vectors. In eukaryotes, the pathway flux is typically balanced by stoichiometric fine-tuning of reaction steps by varying the transcript levels of the genes involved. Regulated (inducible) promoters are desirable to allow a separation of pathway expression from cell growth.

View Article and Find Full Text PDF

Methionine restriction (MetR) is one of the rare regimes that prolongs lifespan across species barriers. Using a yeast model, we recently demonstrated that this lifespan extension is promoted by autophagy, which in turn requires vacuolar acidification. Our study is the first to place autophagy as one of the major players required for MetR-mediated longevity.

View Article and Find Full Text PDF

Reduced supply of the amino acid methionine increases longevity across species through an as yet elusive mechanism. Here, we report that methionine restriction (MetR) extends yeast chronological lifespan in an autophagy-dependent manner. Single deletion of several genes essential for autophagy (ATG5, ATG7 or ATG8) fully abolished the longevity-enhancing capacity of MetR.

View Article and Find Full Text PDF

Synthetic promoters are commonly used tools for circuit design or high level protein production. Promoter engineering efforts in yeasts, such as Saccharomyces cerevisiae and Pichia pastoris have mostly been focused on altering upstream regulatory sequences such as transcription factor binding sites. In higher eukaryotes synthetic core promoters, directly needed for transcription initiation by RNA Polymerase II, have been successfully designed.

View Article and Find Full Text PDF