Publications by authors named "Thomas Kensler"

Aflatoxins are mycotoxins produced by and several other related organisms and are common contaminants of numerous grains and nuts, especially maize (corn) and peanuts. Although, undoubtedly, aflatoxins have been present in the food of humans for millennia, their toxic effects were not discovered until 1960, first becoming evident as a non-infectious outbreak of poisoning of turkeys (Turkey X disease) arising from contaminated groundnut meal. The elucidation of specific chemical structures in 1963 led to the rapid characterization of aflatoxins as among the most potent chemical carcinogens of natural origin ever discovered.

View Article and Find Full Text PDF

Purpose Of Review: This review aims to synthesize the old issues and current understandings of the etiology of liver cancer, focusing on the diverse causative factors influenced by geographical, socioeconomic, and lifestyle variations across different regions.

Recent Findings: We highlight significant geographic disparities in liver cancer risk factors. While hepatitis B and C viruses, aflatoxin exposure, and alcohol consumption remain globally established contributors; metabolic dysfunction-associated steatotic liver disease and metabolic syndromes are increasingly prominent in the West.

View Article and Find Full Text PDF

Liver cancer causes upwards of 1 million cancer deaths annually and is projected to rise by at least 55% over the next 15 years. Two of the major risk factors contributing to liver cancer have been well documented by multiple epidemiologic studies and the hepatitis B virus (HBV) and aflatoxin show a synergy that increases by more than 8-fold the risk of liver cancer relative to HBV alone. Using the population-based cancer registry established by the Qidong Liver Cancer Institute in 1972 and aflatoxin-specific biomarkers, we document that reduction of aflatoxin exposure has likely contributed to a nearly 70% decline in age-standardized liver cancer incidence over the past 30 years despite an unchanging prevalence of HBV infection in cases.

View Article and Find Full Text PDF

The hepatic deletion of Rbpjκ () in the mouse leads to exhibition of the Alagille syndrome phenotype during early postnatal liver development with hyperlipidemia and cholestasis due to attenuated disruption of NOTCH signaling. Given the roles of NRF2 signaling in the regulation of lipid metabolism and bile ductal formation, it was anticipated that these symptoms could be alleviated by enhancing NRF2 signaling in the mouse by hepatic deletion of in compound mice. Unexpectedly, these mice developed higher hepatic and plasma cholesterol levels with more severe cholestatic liver damage during the pre-weaning period than in the mice.

View Article and Find Full Text PDF

The cytoprotective transcription factor NRF2 regulates the expression of several hundred genes in mammalian cells and is a promising therapeutic target in a number of diseases associated with oxidative stress and inflammation. Hence, an ability to monitor basal and inducible NRF2 signalling is vital for mechanistic understanding in translational studies. Due to some caveats related to the direct measurement of NRF2 levels, the modulation of NRF2 activity is typically determined by measuring changes in the expression of one or more of its target genes and/or the associated protein products.

View Article and Find Full Text PDF

Lipodystrophy is a disorder featuring loss of normal adipose tissue depots due to impaired production of normal adipocytes. It leads to a gain of fat deposition in ectopic tissues such as liver and skeletal muscle that results in steatosis, dyslipidemia, and insulin resistance. Previously, we established a lipodystrophy model mouse.

View Article and Find Full Text PDF
Article Synopsis
  • The KEAP1-NRF2 pathway is crucial for protecting cells from oxidative stress, but when overactive, it can allow damaged cells to survive, which can be harmful.
  • Researchers have identified a specific gene program named the NRF2-induced secretory phenotype (NISP) that NRF2 activates in diseased states, promoting the secretion of signals that attract immune cells to damaged areas.
  • In mouse models of liver disease, the NISP helps recruit immune cells to eliminate severely damaged cells, thus preventing the potentially negative effects of cell survival, and acting as a tumor suppressor.
View Article and Find Full Text PDF

Bardoxolone methyl (CDDO-Me) is an oleanane triterpenoid in late-stage clinical development for the treatment of patients with diabetic kidney disease. Preclinical studies in rodents demonstrate the efficacy of triterpenoids against carcinogenesis and other diseases, including renal ischemia-reperfusion injury, hyperoxia-induced acute lung injury, and immune hepatitis. Genetic disruption of abrogates protection by triterpenoids, suggesting that induction of the NRF2 pathway may drive this protection.

View Article and Find Full Text PDF

Assessing personal exposure to environmental toxicants is a critical challenge for predicting disease risk. Previously, using human serum albumin (HSA)-based biomonitoring, we reported dosimetric relationships between adducts at HSA Cys and ambient air pollutant levels (Smith et al., .

View Article and Find Full Text PDF

The physiological roles of aryl hydrocarbon receptor (AhR) in the small intestine have been revealed as immunomodulatory and barrier functions. However, its contributions to cell fate regulation are incompletely understood. The Notch-activated signaling cascade is a central component of intestinal cell fate determinations.

View Article and Find Full Text PDF

The transcription factor NRF2 (NF-E2-related factor 2) plays an important role as a master regulator of the cellular defense system by activating transcriptional programs of NRF2 target genes encoding multiple enzymes related to cellular redox balance and xenobiotic detoxication. Comprehensive transcriptional analyses continue to reveal an ever-broadening range of NRF2 target genes, demonstrating the sophistication and diversification of NRF2 biological signatures beyond its canonical cytoprotective roles. Accumulating evidence indicates that NRF2 has a strong association with the regulation of cell fates by influencing key processes of cellular transitions in the three major phases of the life cycle of the cell (, cell birth, cell differentiation, and cell death).

View Article and Find Full Text PDF
Article Synopsis
  • The KEAP1-NRF2 pathway is crucial for the body's response to oxidative stress, and its mutations are commonly found in aggressive cancers that resist treatment.
  • These cancers are known for their poor prognosis and resistance to existing therapies, prompting a need for new treatment methods.
  • The review explores how NRF2 hyperactivation leads to tumor resistance to therapy and suggests that using a synthetic lethal strategy with prodrugs could effectively target these challenging tumors.
View Article and Find Full Text PDF

The assessment of aflatoxin B (AFB) exposure using isotope-dilution liquid chromatography-mass spectrometry (LCMS) of AFB-lysine adducts in human serum albumin (HSA) has proven to be a highly productive strategy for the biomonitoring of AFB exposure. To compare samples across different individuals and settings, the conventional practice has involved the normalization of raw AFB-lysine adduct concentrations (e.g.

View Article and Find Full Text PDF
Article Synopsis
  • * Research found that the amount of white fat tissue in mice increases during spaceflight, and this increase is less pronounced in mice that don't have Nrf2 (Nrf2 knockout).
  • * Analyses showed that certain lipid levels in the blood change significantly during and after spaceflight, with Nrf2 knockout mice showing different metabolic responses compared to normal mice, highlighting Nrf2's key role in lipid metabolism under stress.
View Article and Find Full Text PDF

Background: Adolescence and early adulthood has been identified as a critical time window for establishing breast cancer risk. Mammographic density is an independent risk factor for breast cancer that may be influenced by diet, but there has been limited research conducted on the impact of diet on mammographic density. Thus, we sought to examine the association between adolescent and early adulthood inflammatory dietary patterns, which have previously been associated with breast cancer risk, and premenopausal mammographic density among women in the Nurses' Health Study II (NHSII).

View Article and Find Full Text PDF

Broccoli sprouts are a convenient and rich source of the glucosinolate glucoraphanin, which can generate the chemopreventive agent sulforaphane through the catalytic actions of plant myrosinase or β-thioglucosidases in the gut microflora. Sulforaphane, in turn, is an inducer of cytoprotective enzymes through activation of Nrf2 signaling, and a potent inhibitor of carcinogenesis in multiple murine models. Sulforaphane is also protective in models of diabetes, neurodegenerative disease, and other inflammatory processes, likely reflecting additional actions of Nrf2 and interactions with other signaling pathways.

View Article and Find Full Text PDF

The Division of Cancer Prevention of the National Cancer Institute (NCI) and the Office of Disease Prevention of the National Institutes of Health co-sponsored the Translational Advances in Cancer Prevention Agent Development Meeting on August 27 to 28, 2020. The goals of this meeting were to foster the exchange of ideas and stimulate new collaborative interactions among leading cancer prevention researchers from basic and clinical research; highlight new and emerging trends in immunoprevention and chemoprevention as well as new information from clinical trials; and provide information to the extramural research community on the significant resources available from the NCI to promote prevention agent development and rapid translation to clinical trials. The meeting included two plenary talks and five sessions covering the range from pre-clinical studies with chemo/immunopreventive agents to ongoing cancer prevention clinical trials.

View Article and Find Full Text PDF

Outdoor air pollution, a spatially and temporally complex mixture, is a human carcinogen. However, ambient measurements may not reflect subject-level exposures, personal monitors do not assess internal dose, and spot assessments of urinary biomarkers may not recapitulate chronic exposures. Nucleophilic sites in serum albumin-particularly the free thiol at Cys-form adducts with electrophiles.

View Article and Find Full Text PDF

Background And Aims: Liver cancer is one of the most dominant malignant tumors in the world. The trends of liver cancer mortality over the past six decades have been tracked in the epidemic region of Qidong, China. Using epidemiological tools, we explore the dynamic changes in age-standardized rates to characterize important aspects of liver cancer etiology and prevention.

View Article and Find Full Text PDF

Bronchopulmonary dysplasia (BPD) is a chronic disease of preterm babies with poor clinical outcomes. Nrf2 transcription factor is crucial for cytoprotective response, whereas Keap1-an endogenous inhibitor of Nrf2 signaling-dampens these protective responses. Nrf2-sufficient (wild type) newborn mice exposed to hyperoxia develop hypoalveolarization, which phenocopies human BPD, and Nrf2 deficiency worsens it.

View Article and Find Full Text PDF

Space flight produces an extreme environment with unique stressors, but little is known about how our body responds to these stresses. While there are many intractable limitations for in-flight space research, some can be overcome by utilizing gene knockout-disease model mice. Here, we report how deletion of Nrf2, a master regulator of stress defense pathways, affects the health of mice transported for a stay in the International Space Station (ISS).

View Article and Find Full Text PDF

Background & Aims: Notch signaling coordinates cell differentiation processes in the intestinal epithelium. The transcription factor Nrf2 orchestrates defense mechanisms by regulating cellular redox homeostasis, which, as shown previously in murine liver, can be amplified through signaling crosstalk with the Notch pathway. However, interplay between these 2 signaling pathways in the gut is unknown.

View Article and Find Full Text PDF

The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway upregulates key cellular defenses. Clinical trials are utilizing pharmacologic Nrf2 inducers such as bardoxolone methyl to treat chronic kidney disease, but Nrf2 activation has been linked to a paradoxical increase in proteinuria. To understand this effect, we examined genetically engineered mice with elevated Nrf2 signaling due to reduced expression of the Nrf2 inhibitor, Kelch-like ECH-associated protein 1 (Keap1).

View Article and Find Full Text PDF