Publications by authors named "Thomas Juffmann"

Interferometric scattering microscopy is a powerful technique that enables various applications, such as mass photometry and particle tracking. Here, we present a numerical toolbox to simulate images obtained in interferometric scattering, coherent bright-field, and dark-field microscopies. The scattered fields are calculated using a boundary element method, facilitating the simulation of arbitrary sample geometries and substrate layer structures.

View Article and Find Full Text PDF

Nanosecond temporal resolution enables new methods for wide-field imaging like time-of-flight, gated detection, and fluorescence lifetime. The optical efficiency of existing approaches, however, presents challenges for low-light applications common to fluorescence microscopy and single-molecule imaging. We demonstrate the use of Pockels cells for wide-field image gating with nanosecond temporal resolution and high photon collection efficiency.

View Article and Find Full Text PDF

Multi-pass transmission electron microscopy (MPTEM) has been proposed as a way to reduce damage to radiation-sensitive materials. For the field of cryo-electron microscopy (cryo-EM), this would significantly reduce the number of projections needed to create a 3D model and would allow the imaging of lower-contrast, more heterogeneous samples. We have designed a 10 keV proof-of-concept MPTEM.

View Article and Find Full Text PDF

Feynman once asked physicists to build better electron microscopes to be able to watch biology at work. While electron microscopes can now provide atomic resolution, electron beam induced specimen damage precludes high resolution imaging of sensitive materials, such as single proteins or polymers. Here, we use simulations to show that an electron microscope based on a multi-pass measurement protocol enables imaging of single proteins, without averaging structures over multiple images.

View Article and Find Full Text PDF

The iterative interaction of a photon with a sample can lead to increased sensitivity in measuring the properties of the samples, such as its refractive index or birefringence. Here we show that this principle can also be used to generate and sense states of light. In particular, we demonstrate a technique to generate states with high orbital angular momentum using a single-vortex phase plate (VPP).

View Article and Find Full Text PDF

Microscopy of biological specimens often requires low light levels to avoid damage. This yields images impaired by shot noise. An improved measurement accuracy at the Heisenberg limit can be achieved exploiting quantum correlations.

View Article and Find Full Text PDF

The emission times of laser-triggered electrons from a sharp tungsten tip are directly characterized under ultrafast, near-infrared laser excitation at Keldysh parameters of 6.6<γ<19.1.

View Article and Find Full Text PDF

Matter-wave interferometry has become an essential tool in studies on the foundations of quantum physics and for precision measurements. Mechanical gratings have played an important role as coherent beamsplitters for atoms, molecules and clusters, because the basic diffraction mechanism is the same for all particles. However, polarizable objects may experience van der Waals shifts when they pass the grating walls, and the undesired dephasing may prevent interferometry with massive objects.

View Article and Find Full Text PDF

Laser-triggered electron emission from sharp metal tips has been demonstrated in recent years as a high brightness, ultrafast electron source. Its possible applications range from ultrafast electron microscopy to laser-based particle accelerators to electron interferometry. The ultrafast nature of the emission process allows for the sampling of an instantaneous radio frequency (RF) voltage that has been applied to a field emitter.

View Article and Find Full Text PDF

We describe the state of the art in preparing, manipulating and detecting coherent molecular matter. We focus on experimental methods for handling the quantum motion of compound systems from diatomic molecules to clusters or biomolecules.Molecular quantum optics offers many challenges and innovative prospects: already the combination of two atoms into one molecule takes several well-established methods from atomic physics, such as for instance laser cooling, to their limits.

View Article and Find Full Text PDF

The observation of interference patterns in double-slit experiments with massive particles is generally regarded as the ultimate demonstration of the quantum nature of these objects. Such matter-wave interference has been observed for electrons, neutrons, atoms and molecules and, in contrast to classical physics, quantum interference can be observed when single particles arrive at the detector one by one. The build-up of such patterns in experiments with electrons has been described as the "most beautiful experiment in physics".

View Article and Find Full Text PDF

The wave-particle duality of massive objects is a cornerstone of quantum physics and a key property of many modern tools such as electron microscopy, neutron diffraction or atom interferometry. Here we report on the first experimental demonstration of quantum interference lithography with complex molecules. Molecular matter-wave interference patterns are deposited onto a reconstructed Si(111) 7x7 surface and imaged using scanning tunneling microscopy.

View Article and Find Full Text PDF

In order to immobilize sublimable and fluorescent dye molecules on transparent surfaces for the detection of far field molecular interference experiments, we investigate the potential of pyridine-functionalized glass substrates as coordination sites for the zinc complex of tetraphenylporphyrin (ZnTPP). Borosilicate glass is functionalized with 4-(6-(ethoxydimethylsilyl)hexyloxy)pyridine in order to cover the glass surface with pyridine subunits. ZnTPP molecules are deposited by sublimation through mechanical masks of various sizes in a high-vacuum chamber.

View Article and Find Full Text PDF

Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the past decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world-view of quantum coherences, entanglement, and other nonclassical effects, has been heading toward systems of increasing complexity.

View Article and Find Full Text PDF