Publications by authors named "Thomas J Slater"

We develop herein plasmonic-catalytic Au-IrO nanostructures with a morphology optimized for efficient light harvesting and catalytic surface area; the nanoparticles have a nanoflower morphology, with closely spaced Au branches all partially covered by an ultrathin (1 nm) IrO shell. This nanoparticle architecture optimizes optical features due to the interactions of closely spaced plasmonic branches forming electromagnetic hot spots, and the ultra-thin IrO layer maximizes efficient use of this expensive catalyst. This concept was evaluated towards the enhancement of the electrocatalytic performances towards the oxygen evolution reaction (OER) as a model transformation.

View Article and Find Full Text PDF

Image registration and non-local Poisson principal component analysis (PCA) denoising improve the quality of characteristic x-ray (EDS) spectrum imaging of Ca-stabilized Nd2/3TiO3 acquired at atomic resolution in a scanning transmission electron microscope. Image registration based on the simultaneously acquired high angle annular dark field image significantly outperforms acquisition with a long pixel dwell time or drift correction using a reference image. Non-local Poisson PCA denoising reduces noise more strongly than conventional weighted PCA while preserving atomic structure more faithfully.

View Article and Find Full Text PDF

The polarizable organic/water interface is used to construct MoS /graphene nanocomposites, and various asymmetrically dual-decorated graphene sandwiches are synthesized. High-resolution transmission electron microscopy and 3D electron tomography confirm their structure. These dual-decorated graphene-based hybrids show excellent hydrogen evolution activity and promising capacitance performance.

View Article and Find Full Text PDF

Energy dispersive X-ray spectroscopy within the scanning transmission electron microscope (STEM) provides accurate elemental analysis with high spatial resolution, and is even capable of providing atomically resolved elemental maps. In this technique, a highly focused electron beam is incident upon a thin sample and the energy of emitted X-rays is measured in order to determine the atomic species of material within the beam path. This elementally sensitive spectroscopy technique can be extended to three dimensional tomographic imaging by acquiring multiple spectrum images with the sample tilted along an axis perpendicular to the electron beam direction.

View Article and Find Full Text PDF

The new generation of energy-dispersive X-ray (EDX) detectors with higher count rates than ever before, paves the way for a new approach to quantitative elemental analysis in the scanning transmission electron microscope. Here we demonstrate a method of calculating partial cross sections for use in quantifying EDX data, beneficial especially because of the simplicity of its implementation. Applying this approach to acid-leached PtCo catalyst nanoparticles leads to quantitative determination of the Pt surface enrichment.

View Article and Find Full Text PDF

In this work, a simple but powerful method for controlling the size and surface morphology of AgAu nanodendrites is presented. Control of the number of Ag nanoparticle seeds is found to provide a fast and effective route by which to manipulate the size and morphology of nanoparticles produced via a combined galvanic replacement and reduction reaction. A lower number of Ag nanoparticle seeds leads to larger nanodendrites with the particles' outer diameter being tunable in the range of 45-148 nm.

View Article and Find Full Text PDF

New AgAu tadpole nanocrystals were synthesized in a one-step reaction involving simultaneous galvanic replacement between Ag nanospheres and AuCl4(-)(aq.) and AuCl4(-)(aq.) reduction to Au in the presence of citrate.

View Article and Find Full Text PDF

The passage of an electric current through graphite or few-layer graphene can result in a striking structural transformation, but there is disagreement about the precise nature of this process. Some workers have interpreted the phenomenon in terms of the sublimation and edge reconstruction of essentially flat graphitic structures. An alternative explanation is that the transformation actually involves a change from a flat to a three-dimensional structure.

View Article and Find Full Text PDF

A new design of in situ liquid cells is demonstrated, providing the first nanometer resolution elemental mapping of nanostructures in solution. The technique has been applied to investigate dynamic liquid-phase synthesis of core-shell nanostructures and to simultaneously image the compositional distribution for multiple elements within the resulting materials.

View Article and Find Full Text PDF

Significant elemental segregation is shown to exist within individual hollow silver-gold (Ag-Au) bimetallic nanoparticles obtained from the galvanic reaction between Ag particles and AuCl4(-). Three-dimensional compositional mapping using energy dispersive X-ray (EDX) tomography within the scanning transmission electron microscope (STEM) reveals that nanoparticle surface segregation inverts from Au-rich to Ag-rich as Au content increases. Maximum Au surface coverage was observed for nanoparticles with approximately 25 atom % Au, which correlates to the optimal catalytic performance in a three-component coupling reaction among cyclohexane carboxyaldehyde, piperidine, and phenylacetylene.

View Article and Find Full Text PDF