Publications by authors named "Thomas J Shepherd"

We report progress in using the isotopic composition and concentration of Pb in the dentine and enamel of deciduous teeth to provide a high resolution time frame of exposure to Pb during fetal development and early childhood. Isotope measurements (total Pb and (208)Pb/(206)Pb, (207)Pb/(206)Pb ratios) were acquired by laser ablation inductively coupled mass spectrometry at contiguous 100 micron intervals across thin sections of the teeth; from the outer enamel surface to the pulp cavity. Teeth samples (n=10) were selected from two cohorts of children, aged 5-8 years, living in NE England.

View Article and Find Full Text PDF

Data are presented to demonstrate that the circumpulpal dentine of deciduous teeth can be used to reconstruct a detailed record of childhood exposure to lead. By combining high spatial resolution laser ablation ICP-MS with dental histology, information was acquired on the concentration of lead in dentine from in utero to several years after birth, using a true time template of dentine growth. Time corrected lead analyses for pairs of deciduous molars confirmed that between-tooth variation for the same child was negligible and that meaningful exposure histories can be obtained from a single, multi-point ablation transect on longitudinal sections of individual teeth.

View Article and Find Full Text PDF

High precision, lead isotope analyses of archived stream sediments from the River Wear catchment, northeast England (1986-88), provide evidence for three main sources of anthropogenic lead pollution; lead mining, industrial lead emissions and leaded petrol. In the upper catchment, pollution is totally controlled and dominated by large lead discharges from historic mining centres in the North Pennine Orefield ((208)Pb/(206)Pb, (207)Pb/(206)Pb ratios range from 2.0744-2.

View Article and Find Full Text PDF

During the last decade, sensitive techniques for detecting DNA have been successfully applied to archaeological and other samples that were a few hundred to a few thousand years old. Nevertheless, there is still controversy and doubt over claims of exceptionally ancient DNA. Additional accounts stretching back nearly a century suggest that microorganisms may survive over geological time in evaporite deposits.

View Article and Find Full Text PDF