Background: Proper catheter placement for convection-enhanced delivery (CED) is required to maximize tumor coverage and minimize exposure to healthy tissue. We developed an image-based model to patient-specifically optimize the catheter placement for rhenium-186 (Re)-nanoliposomes (RNL) delivery to treat recurrent glioblastoma (rGBM).
Methods: The model consists of the 1) fluid fields generated via catheter infusion, 2) dynamic transport of RNL, and 3) transforming RNL concentration to the SPECT signal.
The vast majority of heart attacks occur when vulnerable plaques rupture, releasing their lipid content into the blood stream leading to thrombus formation and blockage of a coronary artery. Detection of these unstable plaques before they rupture remains a challenge. Hemodynamic features including wall shear stress (WSS) and wall shear stress gradient (WSSG) near the vulnerable plaque and local inflammation are known to affect plaque instability.
View Article and Find Full Text PDFUnlabelled: Active surveillance (AS) is a suitable management option for newly diagnosed prostate cancer, which usually presents low to intermediate clinical risk. Patients enrolled in AS have their tumor monitored via longitudinal multiparametric MRI (mpMRI), PSA tests, and biopsies. Hence, treatment is prescribed when these tests identify progression to higher-risk prostate cancer.
View Article and Find Full Text PDFComput Methods Appl Mech Eng
December 2023
The glymphatic system is a brain-wide system of perivascular networks that facilitate exchange of cerebrospinal fluid (CSF) and interstitial fluid (ISF) to remove waste products from the brain. A greater understanding of the mechanisms for glymphatic transport may provide insight into how amyloid beta () and tau agglomerates, key biomarkers for Alzheimer's disease and other neurodegenerative diseases, accumulate and drive disease progression. In this study, we develop an image-guided computational model to describe glymphatic transport and deposition throughout the brain.
View Article and Find Full Text PDFConvection-enhanced delivery of rhenium-186 (Re)-nanoliposomes is a promising approach to provide precise delivery of large localized doses of radiation for patients with recurrent glioblastoma multiforme. Current approaches for treatment planning utilizing convection-enhanced delivery are designed for small molecule drugs and not for larger particles such asRe-nanoliposomes. To enable the treatment planning forRe-nanoliposomes delivery, we have developed a computational fluid dynamics approach to predict the distribution of nanoliposomes for individual patients.
View Article and Find Full Text PDFMedicine is, in its essence, decision making under uncertainty; the decisions are made about tests to be performed and treatments to be administered. Traditionally, the uncertainty in decision making was handled using expertise collected by individual providers and, more recently, systematic appraisal of research in the form of evidence-based medicine. The traditional approach has been used successfully in medicine for a very long time.
View Article and Find Full Text PDFWe present an early version of a Susceptible-Exposed-Infected-Recovered-Deceased (SEIRD) mathematical model based on partial differential equations coupled with a heterogeneous diffusion model. The model describes the spatio-temporal spread of the COVID-19 pandemic, and aims to capture dynamics also based on human habits and geographical features. To test the model, we compare the outputs generated by a finite-element solver with measured data over the Italian region of Lombardy, which has been heavily impacted by this crisis between February and April 2020.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2020
Valvular heart disease has recently become an increasing public health concern due to the high prevalence of valve degeneration in aging populations. For patients with severely impacted aortic valves that require replacement, catheter-based bioprosthetic valve deployment offers a minimally invasive treatment option that eliminates many of the risks associated with surgical valve replacement. Although recent percutaneous device advancements have incorporated thinner, more flexible biological tissues to streamline safer deployment through catheters, the impact of such tissues in the complex, mechanically demanding, and highly dynamic valvular system remains poorly understood.
View Article and Find Full Text PDFProstate cancer and benign prostatic hyperplasia are common genitourinary diseases in aging men. Both pathologies may coexist and share numerous similarities, which have suggested several connections or some interplay between them. However, solid evidence confirming their existence is lacking.
View Article and Find Full Text PDFArch Comput Methods Eng
June 2017
We review the treatment of trimmed geometries in the context of design, data exchange, and computational simulation. Such models are omnipresent in current engineering modeling and play a key role for the integration of design and analysis. The problems induced by trimming are often underestimated due to the conceptional simplicity of the procedure.
View Article and Find Full Text PDFArch Comput Methods Eng
August 2017
[This corrects the article DOI: 10.1007/s11831-017-9220-9.].
View Article and Find Full Text PDFNumerous studies have suggested that medical image derived computational mechanics models could be developed to reduce mortality and morbidity due to cardiovascular diseases by allowing for patient-specific surgical planning and customized medical device design. In this work, we present a novel framework for designing prosthetic heart valves using a parametric design platform and immersogeometric fluid-structure interaction (FSI) analysis. We parameterize the leaflet geometry using several key design parameters.
View Article and Find Full Text PDFComput Methods Appl Mech Eng
February 2017
This paper uses a divergence-conforming B-spline fluid discretization to address the long-standing issue of poor mass conservation in immersed methods for computational fluid-structure interaction (FSI) that represent the influence of the structure as a forcing term in the fluid subproblem. We focus, in particular, on the immersogeometric method developed in our earlier work, analyze its convergence for linear model problems, then apply it to FSI analysis of heart valves, using divergence-conforming B-splines to discretize the fluid subproblem. Poor mass conservation can manifest as effective leakage of fluid through thin solid barriers.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2016
Recently, mathematical modeling and simulation of diseases and their treatments have enabled the prediction of clinical outcomes and the design of optimal therapies on a personalized (i.e., patient-specific) basis.
View Article and Find Full Text PDFPeripheral arterial disease (PAD) is generally attributed to the progressive vascular accumulation of lipoproteins and circulating monocytes in the vessel walls leading to the formation of atherosclerotic plaques. This is known to be regulated by the local vascular geometry, haemodynamics and biophysical conditions. Here, an isogeometric analysis framework is proposed to analyse the blood flow and vascular deposition of circulating nanoparticles (NPs) into the superficial femoral artery (SFA) of a PAD patient.
View Article and Find Full Text PDFWe propose a framework that combines variational immersed-boundary and arbitrary Lagrangian-Eulerian (ALE) methods for fluid-structure interaction (FSI) simulation of a bioprosthetic heart valve implanted in an artery that is allowed to deform in the model. We find that the variational immersed-boundary method for FSI remains robust and effective for heart valve analysis when the background fluid mesh undergoes deformations corresponding to the expansion and contraction of the elastic artery. Furthermore, the computations presented in this work show that the arterial wall deformation contributes significantly to the realism of the simulation results, leading to flow rates and valve motions that more closely resemble those observed in practice.
View Article and Find Full Text PDFIn this paper, we develop a geometrically flexible technique for computational fluid-structure interaction (FSI). The motivating application is the simulation of tri-leaflet bioprosthetic heart valve function over the complete cardiac cycle. Due to the complex motion of the heart valve leaflets, the fluid domain undergoes large deformations, including changes of topology.
View Article and Find Full Text PDFOver decades, the theoretical and applied mechanics community has developed sophisticated approaches for analysing the behaviour of complex engineering systems. Most of these approaches have targeted systems in the transportation, materials, defence and energy industries. Applying and further developing engineering approaches for understanding, predicting and modulating the response of complicated biomedical processes not only holds great promise in meeting societal needs, but also poses serious challenges.
View Article and Find Full Text PDFBiomech Model Mechanobiol
June 2014
Inflammation, a precursor to many diseases including cancer and atherosclerosis, induces differential surface expression of specific vascular molecules. Blood-borne nanoparticles (NPs), loaded with therapeutic and imaging agents, can recognize and use these molecules as vascular docking sites. Here, a computational model is developed within the isogeometric analysis framework to understand and predict the vascular deposition of NPs within an inflamed arterial tree.
View Article and Find Full Text PDFAims: To predict the deposition of nanoparticles in a patient-specific arterial tree as a function of the vascular architecture, flow conditions, receptor surface density and nanoparticle properties.
Materials & Methods: The patient-specific vascular geometry is reconstructed from computed tomography angiography images. The isogeometric analysis framework integrated with a special boundary condition for the firm wall adhesion of nanoparticles is implemented.
Comput Methods Appl Mech Eng
January 2010
This paper describes an automatic and efficient approach to construct unstructured tetrahedral and hexahedral meshes for a composite domain made up of heterogeneous materials. The boundaries of these material regions form non-manifold surfaces. In earlier papers, we developed an octree-based isocontouring method to construct unstructured 3D meshes for a single-material (homogeneous) domain with manifold boundary.
View Article and Find Full Text PDFComput Methods Appl Mech Eng
May 2007
We describe an approach to construct hexahedral solid NURBS (Non-Uniform Rational B-Splines) meshes for patient-specific vascular geometric models from imaging data for use in isogeometric analysis. First, image processing techniques, such as contrast enhancement, filtering, classification, and segmentation, are used to improve the quality of the input imaging data. Then, lumenal surfaces are extracted by isocontouring the preprocessed data, followed by the extraction of vascular skeleton via Voronoi and Delaunay diagrams.
View Article and Find Full Text PDFCurrent practice in vascular surgery utilizes only diagnostic and empirical data to plan treatments and does not enable quantitative a priori prediction of the outcomes of interventions. We have previously described a new approach to vascular surgery planning based on solving the governing equations of blood flow in patient-specific models. A one-dimensional finite-element method was used to simulate blood flow in eight porcine thoraco-thoraco aortic bypass models.
View Article and Find Full Text PDFIn vivo quantification of vessel wall cyclic strain has important applications in physiology and disease research and the design of intravascular devices. We describe a method to calculate vessel wall strain from cine PC-MRI velocity data. Forward-backward time integration is used to calculate displacement fields from the velocities, and cyclic Green-Lagrange strain is computed in segments defined by the displacements.
View Article and Find Full Text PDF