Publications by authors named "Thomas J Piggot"

Tools based on artificial intelligence (AI) are currently revolutionising many fields, yet their applications are often limited by the lack of suitable training data in programmatically accessible format. Here we propose an effective solution to make data scattered in various locations and formats accessible for data-driven and machine learning applications using the overlay databank format. To demonstrate the practical relevance of such approach, we present the NMRlipids Databank-a community-driven, open-for-all database featuring programmatic access to quality-evaluated atom-resolution molecular dynamics simulations of cellular membranes.

View Article and Find Full Text PDF

Interest in lipid interactions with proteins and other biomolecules is emerging not only in fundamental biochemistry but also in the field of nanobiotechnology where lipids are commonly used, for example, in carriers of mRNA vaccines. The outward-facing components of cellular membranes and lipid nanoparticles, the lipid headgroups, regulate membrane interactions with approaching substances, such as proteins, drugs, RNA, or viruses. Because lipid headgroup conformational ensembles have not been experimentally determined in physiologically relevant conditions, an essential question about their interactions with other biomolecules remains unanswered: Do headgroups exchange between a few rigid structures, or fluctuate freely across a practically continuous spectrum of conformations? Here, we combine solid-state NMR experiments and molecular dynamics simulations from the NMRlipids Project to resolve the conformational ensembles of headgroups of four key lipid types in various biologically relevant conditions.

View Article and Find Full Text PDF

Organophosphorus nerve agents (NAs) are the most lethal chemical warfare agents and have been used by state and non-state actors since their discovery in the 1930s. They covalently modify acetylcholinesterase, preventing the breakdown of acetylcholine (ACh) with subsequent loss of synaptic transmission, which can result in death. Despite the availability of several antidotes for OPNA exposure, none directly targets the nicotinic acetylcholine receptor (nAChR) mediated component of toxicity.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are a potential solution to the increasing threat of antibiotic resistance, but successful design of active but nontoxic AMPs requires understanding their mechanism of action. Molecular dynamics (MD) simulations can provide atomic-level information regarding how AMPs interact with the cell membrane. Here, we have used MD simulations to study two linear analogs of battacin, a naturally occurring cyclic, lipidated, nonribosomal AMP.

View Article and Find Full Text PDF

Molecular dynamics simulations allow the conformational motion of a molecule such as a protein to be followed over time at atomic-level detail. Several choices need to be made prior to running a simulation, including the software, which molecules to include in the simulation, and the force field used to describe their behavior. Guidance on making these choices and other important aspects of running MD simulations is outlined here.

View Article and Find Full Text PDF

Phosphatidylserine (PS) is a negatively charged lipid type commonly found in eukaryotic membranes, where it interacts with proteins via nonspecific electrostatic interactions as well as via specific binding. Moreover, in the presence of calcium ions, PS lipids can induce membrane fusion and phase separation. Molecular details of these phenomena remain poorly understood, partly because accurate models to interpret the experimental data have not been available.

View Article and Find Full Text PDF

The Mla pathway is believed to be involved in maintaining the asymmetrical Gram-negative outer membrane via retrograde phospholipid transport. The pathway is composed of three components: the outer membrane MlaA-OmpC/F complex, a soluble periplasmic protein, MlaC, and the inner membrane ATPase, MlaFEDB complex. Here, we solve the crystal structure of MlaC in its phospholipid-free closed apo conformation, revealing a pivoting β-sheet mechanism that functions to open and close the phospholipid-binding pocket.

View Article and Find Full Text PDF

Bacterial membranes, and those of Gram-negative bacteria in particular, are some of the most biochemically diverse membranes known. They incorporate a wide range of lipid types and proteins of varying sizes, architectures, and functions. While simpler biological membranes have been the focus of myriad simulation studies over the years that have yielded invaluable details to complement, and often to direct, ongoing experimental studies, simulations of complex bacterial membranes have been slower to emerge.

View Article and Find Full Text PDF

The Gram-negative bacterial outer membrane contains lipopolysaccharide, which potently stimulates the mammalian innate immune response. This involves a relay of specialized complexes culminating in transfer of lipopolysaccharide from CD14 to Toll-like receptor 4 (TLR4) and its co-receptor MD-2 on the cell surface, leading to activation of downstream inflammatory responses. In this study we develop computational models to trace the TLR4 cascade in near-atomic detail.

View Article and Find Full Text PDF

Gram-negative bacteria such as Escherichia coli are protected by a complex cell envelope. The development of novel therapeutics against these bacteria necessitates a molecular level understanding of the structure-dynamics-function relationships of the various components of the cell envelope. We use atomistic MD simulations to reveal the details of covalent and noncovalent protein interactions that link the outer membrane to the aqueous periplasmic region.

View Article and Find Full Text PDF

For molecular dynamics simulations of biological membrane systems to live up to the potential of providing accurate atomic level detail into membrane properties and functions, it is essential that the force fields used to model such systems are as accurate as possible. One membrane property that is often used to assess force field accuracy is the carbon-hydrogen (or carbon-deuterium) order parameters of the lipid tails, which can be accurately measured using experimental NMR techniques. There are a variety of analysis tools available to calculate these order parameters from simulations and it is essential that these computational tools work correctly to ensure the accurate assessment of the simulation force fields.

View Article and Find Full Text PDF

The envelope of Gram-negative bacteria is highly complex, containing separate outer and inner membranes and an intervening periplasmic space encompassing a peptidoglycan (PGN) cell wall. The PGN scaffold is anchored non-covalently to the outer membrane via globular OmpA-like domains of various proteins. We report atomically detailed simulations of PGN bound to OmpA in three different states, including the isolated C-terminal domain (CTD), the full-length monomer, or the complete full-length dimeric form.

View Article and Find Full Text PDF

OmpA is a multidomain protein found in the outer membranes of most Gram-negative bacteria. Despite a wealth of reported structural and biophysical studies, the structure-function relationships of this protein remain unclear. For example, it is still debated whether it functions as a pore, and the precise molecular role it plays in attachment to the peptidoglycan of the periplasm is unknown.

View Article and Find Full Text PDF

The bacterial cell envelope is composed of a mixture of different lipids and proteins, making it an inherently complex organelle. The interactions between integral membrane proteins and lipids are crucial for their respective spatial localization within bacterial cells. We have employed microsecond timescale coarse-grained molecular dynamics simulations of vesicles of varying sizes and with a range of protein and lipid compositions, and used novel approaches to measure both local and global system dynamics, the latter based on spherical harmonics analysis.

View Article and Find Full Text PDF

Antimicrobial peptides are small, cationic proteins that can induce lysis of bacterial cells through interaction with their membranes. Different mechanisms for cell lysis have been proposed, but these models tend to neglect the role of the chemical composition of the membrane, which differs between bacterial species and can be heterogeneous even within a single cell. Moreover, the cell envelope of Gram-negative bacteria such as E.

View Article and Find Full Text PDF

The multidrug and toxic compound extrusion transporters extrude a wide variety of substrates out of both mammalian and bacterial cells via the electrochemical gradient of protons and cations across the membrane. The substrates transported by these proteins include toxic metabolites and antimicrobial drugs. These proteins contribute to multidrug resistance in both mammalian and bacterial cells and are therefore extremely important from a biomedical perspective.

View Article and Find Full Text PDF

As part of the innate immune system, Toll-like receptor 4 (TLR4) recognizes bacterial cell surface lipopolysaccharide (LPS) by forming a complex with a lipid-binding co-receptor, MD-2. In the presence of agonist, TLR4·MD-2 dimerizes to form an active receptor complex, leading to initiation of intracellular inflammatory signals. TLR4 is of great biomedical interest, but its pharmacological manipulation is complicated because even subtle variations in the structure of LPS can profoundly impact the resultant immunological response.

View Article and Find Full Text PDF

Molecular dynamics simulations provide a route to studying the dynamics of lipid bilayers at atomistic or near atomistic resolution. Over the past 10 years or so, molecular dynamics simulations have become an established part of the biophysicist's tool kit for the study of model biological membranes. As simulation time scales move from tens to hundreds of nanoseconds and beyond, it is timely to re-evaluate the accuracy of simulation models.

View Article and Find Full Text PDF

Engineered protein nanopores, such as those based on α-hemolysin from Staphylococcus aureus have shown great promise as components of next-generation DNA sequencing devices. However, before such protein nanopores can be used to their full potential, the conformational dynamics and translocation pathway of the DNA within them must be characterized at the individual molecule level. Here, we employ atomistic molecular dynamics simulations of single-stranded DNA movement through a model α-hemolysin pore under an applied electric field.

View Article and Find Full Text PDF

Hia is a trimeric autotransporter found in the outer membrane of Haemphilus influenzae. The X-ray structure of Hia translocator domain revealed each monomer to consist of an α-helix connected via a loop to a 4-stranded β-sheet, thus the topology of the trimeric translocator domain is a 12-stranded β-barrel containing 3 α-helices that protrude from the mouth of the β-barrel into the extracellular medium. Molecular dynamics simulations of the Hia monomer and trimer have been employed to explore the interactions between the helices, β-barrel and connecting loops that may contribute to the stability of the trimer.

View Article and Find Full Text PDF

The TonB-dependent transporters mediate high-affinity binding and active transport of a variety of substrates across the outer membrane of Escherichia coli. The substrates transported by these proteins are large, scarce nutrients that are unable to gain entry into the cell by passive diffusion across the complex, asymmetric bilayer that constitutes the outer membrane. Experimental studies have identified loop regions that are essential for the correct functioning of these proteins.

View Article and Find Full Text PDF

GroEL, along with its coprotein GroES, is essential for ensuring the correct folding of unfolded or newly synthesized proteins in bacteria. GroEL is a complex, allosteric molecule, composed of two heptameric rings stacked back to back, that undergoes large structural changes during its reaction cycle. These structural changes are driven by the cooperative binding and subsequent hydrolysis of ATP, by GroEL.

View Article and Find Full Text PDF

Bacterial membranes are complex organelles composed of a variety of lipid types. The differences in their composition are a key factor in determining their relative permeabilities. The success of antibacterial agents depends upon their interaction with bacterial membranes, yet little is known about the molecular-level interactions within membranes of different bacterial species.

View Article and Find Full Text PDF

The N-terminal domain of fukutin-I has been implicated in the localization of the protein in the endoplasmic reticulum and Golgi Apparatus. It has been proposed to mediate this through its interaction with the thinner lipid bilayers found in these compartments. Here we have employed multiscale molecular dynamics simulations and circular dichroism spectroscopy to explore the structure, stability, and orientation of the short 36-residue N-terminus of fukutin-I (FK1TMD) in lipids with differing tail lengths.

View Article and Find Full Text PDF