Publications by authors named "Thomas J O'Farrell"

Resistance to transforming growth factor (TGF)-beta1-mediated growth suppression in tumor cells is often associated with the functional loss of TGF-beta receptors. Here we describe two B-cell lymphoma cell lines (DB and RL) that differ in their sensitivity to TGF-beta1-mediated growth suppression. The TGF-beta1-resistant cell line DB lacked functional TGF-beta receptor II (T beta RII) in contrast to the TGF-beta-responsive cell line RL, whereas both cell lines had comparable levels of receptor I (T beta RI).

View Article and Find Full Text PDF

The collagenases are members of the matrix metalloproteinase family (MMP) that degrade native triple-helical type I collagen. To understand the mechanism by which these enzymes recognize and cleave this substrate, we studied the substrate specificity of a modified form of MMP-1 (FC) in which its active site region (amino acids 212-254) had been replaced with that of MMP-9 (amino acids 395-437). Although this substitution increased the activity of the enzyme toward gelatin and the peptide substrate Mca-PLGL(Dpa)AR-NH2 by approximately 3- and approximately 11-fold, respectively, it decreased the type I collagenolytic activity of the enzyme to 0.

View Article and Find Full Text PDF

The mechanisms for "gain-of-function" phenotypes produced by mutant p53s such as enhanced proliferation, resistance to transforming growth factor-beta-mediated growth suppression, and increased tumorigenesis are not known. One theory is that these phenotypes are caused by novel transcriptional regulatory events acquired by mutant p53s. Another explanation is that these effects are a result of an imbalance of functions caused by the retention of some of the wild-type transcriptional regulatory events in the context of a loss of other counterbalancing activities.

View Article and Find Full Text PDF