The nucleolar surveillance pathway monitors nucleolar integrity and responds to nucleolar stress by mediating binding of ribosomal proteins to MDM2, resulting in p53 accumulation. Inappropriate pathway activation is implicated in the pathogenesis of ribosomopathies, while drugs selectively activating the pathway are in trials for cancer. Despite this, the molecular mechanism(s) regulating this process are poorly understood.
View Article and Find Full Text PDFTranscription factor MYB has recently emerged as a promising drug target for the treatment of acute myeloid leukemia (AML). Here, we have characterized a group of natural sesquiterpene lactones (STLs), previously shown to suppress MYB activity, for their potential to decrease AML cell proliferation. Unlike what was initially thought, these compounds inhibit MYB indirectly via its cooperation partner C/EBPβ.
View Article and Find Full Text PDFAcute leukaemias express high levels of MYB which are required for the initiation and maintenance of the disease. Inhibition of MYB expression or activity has been shown to suppress MLL-fusion oncoprotein-induced acute myeloid leukaemias (AML), which are among the most aggressive forms of AML, and indeed MYB transcription has been reported to be regulated by the MLL-AF9 oncoprotein. This highlights the importance of understanding the mechanism of MYB transcriptional regulation in these leukaemias.
View Article and Find Full Text PDFOver 70% of human breast cancers are estrogen receptor-positive (ER), most of which express MYB. In these and other cell types, the MYB transcription factor regulates the expression of many genes involved in cell proliferation, differentiation, tumorigenesis, and apoptosis. So far, no clear link has been established between MYB and the DNA damage response in breast cancer.
View Article and Find Full Text PDFThe ability of transcriptional regulators to drive lineage conversion of somatic cells offers great potential for the treatment of human disease. To explore the concept of switching on specific target genes in heterologous cells, we developed a model system to screen candidate factors for their ability to activate the archetypal megakaryocyte-specific chemokine platelet factor 4 (PF4) in fibroblasts. We found that co-expression of the transcriptional regulators GATA1 and FLI1 resulted in a significant increase in levels of PF4, which became magnified over time.
View Article and Find Full Text PDFThe importance of Wnt pathway signaling in development of bone has been well established. Here we investigated the role of a known Wnt target, ENC1 (ectodermal-neural cortex 1; NRP/B), in osteoblast differentiation. Enc1 expression was detected in mouse osteoblasts, chondrocytes, and osteocytes by in situ hybridization, and osteoblastic expression was verified in differentiating primary cultures and MC3T3-E1 pre-osteoblast cells, with 57 kDa and 67 kDa ENC1 protein isoforms detected throughout differentiation.
View Article and Find Full Text PDFEpithelial to mesenchymal transition (EMT) is a developmental program that has been implicated in progression, metastasis and therapeutic resistance of some carcinomas. To identify genes whose overexpression drives EMT, we screened a lentiviral expression library of 17000 human open reading frames (ORFs) using high-content imaging to quantitate cytoplasmic vimentin. Hits capable of increasing vimentin in the mammary carcinoma-derived cell line MDA-MB-468 were confirmed in the non-tumorigenic breast-epithelial cell line MCF10A.
View Article and Find Full Text PDFMalignant melanomas often arise from nevi, which result from initial oncogene-induced hyperproliferation of melanocytes that are maintained in a CDKN2A/p16-mediated senescent state. Thus, genes that can bypass this senescence barrier are likely to contribute to melanoma development. We have performed a gain-of-function screen of 17,030 lentivirally expressed human open reading frames (ORFs) in a melanoma cell line containing an inducible p16 construct to identify such genes.
View Article and Find Full Text PDFA majority of adenoid cystic carcinomas (AdCC)-rare tumors of the salivary gland and some other organs-have recently been found to be driven by chromosomal translocations resulting in MYB-NFIB fusions. Brayer and colleagues and Mitani and colleagues have now reported that AdCCs can alternatively be driven by similar rearrangements involving a second MYB family gene, MYBL1, and that these two drivers act in remarkably similar ways.
View Article and Find Full Text PDFOur previous studies showed that MYB is required for proliferation of, and confers protection against apoptosis on, estrogen receptor-positive (ER(+ve)) breast cancer cells, which are almost invariably also MYB(+ve). We have also shown that MYB expression in ER(+ve) breast cancer cells is regulated at the level of transcriptional elongation and as such, is suppressed by CDK9i. Here we examined the effects of CDK9i on breast cancer cells and the involvement of MYB in these effects.
View Article and Find Full Text PDFHuman papillomavirus (HPV) is the causative agent in cervical cancer. HPV oncogenes are major drivers of the transformed phenotype, and the cancers remain addicted to these oncogenes. A screen of the human kinome has identified inhibition of Aurora kinase A (AURKA) as being synthetically lethal on the background of HPV E7 expression.
View Article and Find Full Text PDFDrugs that target intracellular signalling pathways have markedly improved progression-free survival of patients with cancers who were previously regarded as untreatable. However, the rapid emergence of therapeutic resistance, as a result of bypass signalling or downstream mutation within kinase-mediated signalling cascades, has curtailed the benefit gained from these therapies. Such resistance mechanisms are facilitated by the linearity and redundancy of kinase signalling pathways.
View Article and Find Full Text PDFMYB transcriptional elongation is regulated by an attenuator sequence within intron 1 that has been proposed to encode a RNA stem loop (SLR) followed by a polyU tract. We report that NFκBp50 can bind the SLR polyU RNA and promote MYB transcriptional elongation together with NFκBp65. We identified a conserved lysine-rich motif within the Rel homology domain (RHD) of NFκBp50, mutation of which abrogated the interaction of NFκBp50 with the SLR polyU and impaired NFκBp50 mediated MYB elongation.
View Article and Find Full Text PDFAlthough numerous techniques for protein expression and production are available the pace of genome sequencing outstrips our ability to analyze the encoded proteins. To address this bottleneck, we have established a system for parallelized cloning, DNA production and cell-free expression of large numbers of proteins. This system is based on a suite of pCellFree Gateway destination vectors that utilize a Species Independent Translation Initiation Sequence (SITS) that mediates recombinant protein expression in any in vitro translation system.
View Article and Find Full Text PDFPigment Cell Melanoma Res
September 2014
Melanoma cell lines are commonly defective for the G2-phase cell cycle checkpoint that responds to incomplete catenation of the replicated chromosomes. Here, we demonstrate that melanomas defective for this checkpoint response are less sensitive to genotoxic stress, suggesting that the defective cell lines compensated for the checkpoint loss by increasing their ability to cope with DNA damage. We performed an siRNA kinome screen to identify kinases responsible and identified PI3K pathway components.
View Article and Find Full Text PDFProtein dimerization and oligomerization is commonly used by nature to increase the structural and functional complexity of proteins. Regulated protein assembly is essential to transfer information in signaling, transcriptional, and membrane trafficking events. Here we show that a combination of cell-free protein expression, a proximity based interaction assay (AlphaScreen), and single-molecule fluorescence allow rapid mapping of homo- and hetero-oligomerization of proteins.
View Article and Find Full Text PDFThe MYB oncogene is widely expressed in acute leukemias and is important for the continued proliferation of leukemia cells, suggesting that MYB may be a therapeutic target in these diseases. However, realization of this potential requires a significant therapeutic window for MYB inhibition, given its essential role in normal hematopoiesis, and an approach for developing an effective therapeutic. We previously showed that the interaction of c-Myb with the coactivator CBP/p300 is essential for its transforming activity.
View Article and Find Full Text PDFIntroduction: Epithelial-to-mesenchymal transition (EMT) promotes cell migration and is important in metastasis. Cellular proliferation is often downregulated during EMT, and the reverse transition (MET) in metastases appears to be required for restoration of proliferation in secondary tumors. We studied the interplay between EMT and proliferation control by MYB in breast cancer cells.
View Article and Find Full Text PDFThe effect of combining MYB suppression with the histone deacetylase inhibitor LBH589 was studied in human myeloid leukemia cell lines. MYB knockdown inhibited proliferation and induced apoptosis in U937 and K562 cells in vitro, and also sensitized both to the pro-apoptotic effect of LBH589. This was accompanied by enhanced expression of the pro-apoptotic BCL2 family members BOK and BIM.
View Article and Find Full Text PDFRNA interference-mediated suppression of MYB expression promoted apoptosis in the AML cell line U937, without affecting expression of the anti-apoptotic MYB target BCL2. This was accompanied by up-regulation of the pro-apoptotic gene DRAK2 and stimulation of caspase-9 activity. Moreover, RNA interference-mediated suppression of DRAK2 in U937 cells alleviated apoptosis induced by MYB down-regulation.
View Article and Find Full Text PDF