Oxygen is a vital but often overlooked variable in tissue culture experiments. Physiologically relevant oxygen tensions range from partial pressures of 100 mmHg at the alveolar-capillary interface in the lung to less than 7.6 mmHg in the hypoxic regions of solid tumors.
View Article and Find Full Text PDFLipid droplets (LDs) are intracellular storage vesicles composed of a neutral lipid core surrounded by a glycerophospholipid membrane. LD accumulation is associated with different stages of cancer progression and stress responses resulting from chemotherapy. In previous work, a novel dual nano-electrospray ionization source and data-dependent acquisition method for measuring the relative abundances of lipid species between two extracts were described and validated.
View Article and Find Full Text PDFOxygen is an essential regulator of cellular function and phenotype. Despite its importance, the incorporation of physiologically relevant oxygen tensions is often overlooked in experimental setups. Ambient oxygen tensions (pO ∼152 mmHg) are significantly higher than those in the alveolar-capillary barrier of the lung, which is the most oxygen-rich interface in the body (pO ∼104 mmHg).
View Article and Find Full Text PDFMonolayer cultures of hepatocytes lack many aspects of the liver sinusoid, including a tissue-level organization that results from extracellular matrix interactions and gradients of soluble molecules that span from the portal triad to the central vein. We measured the activity and transcript levels of drug-metabolizing enzymes in HepaRG cells maintained in three different culture configurations: as monolayers, seeded onto paper scaffolds that were pre-loaded with a collagen matrix, and when seeded directly into the paper scaffolds as a cell-laden gel. Drug metabolism was significantly decreased in the presence of the paper scaffolds compared to monolayer configurations when cells were exposed to standard culture conditions.
View Article and Find Full Text PDFMonolayer cultures of hepatocytes lack many aspects of the liver sinusoid, including a tissue-level organization that results from extracellular matrix interactions and gradients of soluble molecules that span from the portal triad to the central vein. We measured the activity and transcript levels of drug-metabolizing enzymes in HepaRG cells maintained in three different culture configurations: as monolayers, seeded onto paper scaffolds that were pre-loaded with a collagen matrix, and when seeded directly into the paper scaffolds as a cell-laden gel. Drug metabolism was significantly decreased in the presence of the paper scaffolds compared to monolayer configurations when cells were exposed to standard culture conditions.
View Article and Find Full Text PDFThe cellular microenvironment plays an important role in liver zonation, the spatial distribution of metabolic tasks amongst hepatocytes lining the sinusoid. Standard tissue culture practices provide an excess of oxygen and a lack of signaling molecules typically found in the liver. We hypothesized that incorporating physiologically relevant environments would promote post-differentiation patterning of hepatocytes and result in zonal-like characteristics.
View Article and Find Full Text PDFThis study evaluates the impact of physiologically relevant oxygen tensions on the response of HepG2 cells to known inducers and hepatotoxic drugs. We compared transcriptional regulation and CYP1A activity after a 48 h exposure at atmospheric culture conditions (20% O) with representative periportal (8% O) and perivenous (3% O) oxygen tensions. We evaluated cellular responses in 2D and 3D cultures at each oxygen tension in parallel, using monolayers and a paper-based culture platform that supports cells suspended in a collagen-rich environment.
View Article and Find Full Text PDFAcetone is the expected ketone product of an acetic acid decarboxylative ketonization reaction with metal oxide catalysts used in the industrial production of ketones and for biofuel upgrade. Decarboxylative cross-ketonization of a mixture of acetic and isobutyric acids yields highly valued unsymmetrical methyl isopropyl ketone (MIPK) along with two less valuable symmetrical ketones, acetone and diisopropyl ketone (DIPK). We describe a side reaction of isobutyric acid with acetone yielding the cross-ketone MIPK with monoclinic zirconia and anatase titania catalysts in the absence of acetic acid.
View Article and Find Full Text PDFThe health risks associated with acute and prolonged exposure to estrogen receptor (ER) modulators has led to a concerted effort to identify and prioritize potential disruptors present in the environment. ER agonists and antagonists are identified with end-point assays, quantifying changes in cellular proliferation or gene transactivation in monolayers of estrogen receptor alpha expressing (ER+) cells upon exposure. While these monolayer cultures can be prepared, dosed, and analyzed in a highly parallelized manner, they are unable to predict the potencies of ER modulators in vivo accurately.
View Article and Find Full Text PDF