Publications by authors named "Thomas J Cogswell"

Article Synopsis
  • The development of differentiation therapy for Acute Myeloid Leukemia (AML) could significantly enhance patient outcomes globally.
  • Our lab has identified a new class of agents that successfully reduce tumors in mouse models.
  • We optimized a compound (OXS007417) for better effectiveness and safety, and discovered improved versions (OXS008255 and OXS008474) that showed better pharmacokinetics and delayed tumor growth in tests with HL-60 cells.
View Article and Find Full Text PDF

Acute myeloid leukaemia (AML) is an aggressive type of leukaemia with low rates of long-term survival. While the current standard of care is based on cytotoxic chemotherapy, a promising emerging approach is differentiation therapy. However, most current differentiating agents target specific mutations and are effective only in certain patient subtypes.

View Article and Find Full Text PDF

Despite much progress in developing better drugs, many patients with acute myeloid leukemia (AML) still die within a year of diagnosis. This is partly because it is difficult to identify therapeutic targets that are effective across multiple AML subtypes. One common factor across AML subtypes is the presence of a block in differentiation.

View Article and Find Full Text PDF

Palladium-catalyzed reactions are among the most commonly used procedures in organic synthesis. The products have a range of uses, including as intermediates in total synthesis and as screening compounds for drug discovery or agrochemical projects. Despite the known and potentially deleterious effects of low-level metal impurities in biological assays, the quantification of metal remaining in reaction products to verify the effective removal of the transition element is rarely reported.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is the most aggressive type of blood cancer, and there is a continued need for new treatments that are well tolerated and improve long-term survival rates in patients. Induction of differentiation has emerged as a promising alternative to conventional cytotoxic chemotherapy, but known agents lack efficacy in genetically distinct patient populations. Previously, we established a phenotypic screen to identify small molecules that could stimulate differentiation in a range of AML cell lines.

View Article and Find Full Text PDF

Induction of differentiation is a promising therapeutic strategy against acute myeloid leukemia. However, current differentiation therapies are effective only to specific patient populations. To identify novel differentiation agents with wider efficacy, we developed a phenotypic high-throughput screen with a range of genetically diverse cell lines.

View Article and Find Full Text PDF

A fast, protecting-group-free synthesis of dihydropyridinones has been developed. Starting from commercially available aldehydes, a novel one-pot amidoallylation gave access to diene compounds in good yields. Ring-closing metathesis conditions were then employed to produce the target dihydropyridinones efficiently and in high yields.

View Article and Find Full Text PDF

Introduction of difluorinated functionality has emerged as a powerful means for conformational design with minimal steric footprint. Synthetic approaches for the preparation of aryl difluoromethylene ether containing novel building blocks were established, enabling the inclusion of the aryl difluoromethylene ether system into macrocyclic scaffolds for the first time.

View Article and Find Full Text PDF

An efficient and selective approach for the synthesis of polyfunctionalised 3-fluoropyrroles has been developed starting from commercial aldehydes. The methodology is concise, efficient and allows for the modular and systematic assembly of polysubstituted 3-fluoropyrroles. This synthesis provides an alternative and highly convergent strategy for the generation of these chemically and biologically important units.

View Article and Find Full Text PDF

The diastereoselective synthesis of fluorinated δ-lactams has been achieved through an efficient five step process. The route can tolerate a range of functionalities, and provides a quick route for the generation of new fluorinated medicinal building blocks.

View Article and Find Full Text PDF