Molecular evolution studies, such as phylogenomic studies and genome-wide surveys of selection, often rely on gene families of single-copy orthologs (SC-OGs). Large gene families with multiple homologs in 1 or more species-a phenomenon observed among several important families of genes such as transporters and transcription factors-are often ignored because identifying and retrieving SC-OGs nested within them is challenging. To address this issue and increase the number of markers used in molecular evolution studies, we developed OrthoSNAP, a software that uses a phylogenetic framework to simultaneously split gene families into SC-OGs and prune species-specific inparalogs.
View Article and Find Full Text PDFBioinformatic analysis-such as genome assembly quality assessment, alignment summary statistics, relative synonymous codon usage, file format conversion, and processing and analysis-is integrated into diverse disciplines in the biological sciences. Several command-line pieces of software have been developed to conduct some of these individual analyses, but unified toolkits that conduct all these analyses are lacking. To address this gap, we introduce BioKIT, a versatile command line toolkit that has, upon publication, 42 functions, several of which were community-sourced, that conduct routine and novel processing and analysis of genome assemblies, multiple sequence alignments, coding sequences, sequencing data, and more.
View Article and Find Full Text PDFMotivation: Diverse disciplines in biology process and analyze multiple sequence alignments (MSAs) and phylogenetic trees to evaluate their information content, infer evolutionary events and processes and predict gene function. However, automated processing of MSAs and trees remains a challenge due to the lack of a unified toolkit. To fill this gap, we introduce PhyKIT, a toolkit for the UNIX shell environment with 30 functions that process MSAs and trees, including but not limited to estimation of mutation rate, evaluation of sequence composition biases, calculation of the degree of violation of a molecular clock and collapsing bipartitions (internal branches) with low support.
View Article and Find Full Text PDFHighly divergent sites in multiple sequence alignments (MSAs), which can stem from erroneous inference of homology and saturation of substitutions, are thought to negatively impact phylogenetic inference. Thus, several different trimming strategies have been developed for identifying and removing these sites prior to phylogenetic inference. However, a recent study reported that doing so can worsen inference, underscoring the need for alternative alignment trimming strategies.
View Article and Find Full Text PDF