Risk aversion is one of the most basic assumptions of economic behavior, but few studies have addressed the question of where risk preferences come from and why they differ from one individual to the next. Here, we propose an evolutionary explanation for the origin of risk aversion. In the context of a simple binary-choice model, we show that risk aversion emerges by natural selection if reproductive risk is systematic (i.
View Article and Find Full Text PDFDespite many compelling applications in economics, sociobiology, and evolutionary psychology, group selection is still one of the most hotly contested ideas in evolutionary biology. Here we propose a simple evolutionary model of behavior and show that what appears to be group selection may, in fact, simply be the consequence of natural selection occurring in stochastic environments with reproductive risks that are correlated across individuals. Those individuals with highly correlated risks will appear to form "groups", even if their actions are, in fact, totally autonomous, mindless, and, prior to selection, uniformly randomly distributed in the population.
View Article and Find Full Text PDFBackground: Most economic theories are based on the premise that individuals maximize their own self-interest and correctly incorporate the structure of their environment into all decisions, thanks to human intelligence. The influence of this paradigm goes far beyond academia-it underlies current macroeconomic and monetary policies, and is also an integral part of existing financial regulations. However, there is mounting empirical and experimental evidence, including the recent financial crisis, suggesting that humans do not always behave rationally, but often make seemingly random and suboptimal decisions.
View Article and Find Full Text PDFNeuropsychopharmacology
August 2006
The anatomical distribution and pharmacology of serotonin 6 receptors (5-HT6Rs) implicate them as contributors to the serotonergic regulation of complex behavior. To complement the limited range of pharmacological tools available to examine 5-HT6R function, we have generated a mouse line bearing a constitutive null mutation of the 5-HT6R gene. No perturbations of baseline behavior were noted in a wide array of assays pertinent to multiple neurobehavioral processes.
View Article and Find Full Text PDFMammalian oocytes are held in prophase arrest by an unknown signal from the surrounding somatic cells. Here we show that the orphan Gs-linked receptor GPR3, which is localized in the oocyte, maintains this arrest. Oocytes from Gpr3 knockout mice resume meiosis within antral follicles, independently of an increase in luteinizing hormone, and this phenotype can be reversed by injection of Gpr3 RNA into the oocytes.
View Article and Find Full Text PDFMelanopsin has been proposed as an important photoreceptive molecule for the mammalian circadian system. Its importance in this role was tested in melanopsin knockout mice. These mice entrained to a light/dark cycle, phase-shifted after a light pulse, and increased circadian period when light intensity increased.
View Article and Find Full Text PDF