Publications by authors named "Thomas I Kalman"

The structure of the anticancer drug capecitabine was redesigned to prevent metabolic conversion to 5-fluorouracil and its associated potentially fatal toxicities. The resulting cytidine analogue, pencitabine, is a hybrid of capecitabine and gemcitabine, another anticancer drug in clinical use. Preliminary biological evaluation revealed that pencitabine is cytotoxic in cell culture and orally active in a human xenograft test system.

View Article and Find Full Text PDF

A one-step method for the synthesis of cyclic pronucleotide (cProTide) derivatives of 5-fluoro-2'-deoxyuridine (FdUrd), utilizing a novel phosphoramidating reagent, is described. Stereochemistry at phosphorus was established by NMR studies and modeling. Cytotoxicity data of representative cProTide derivatives of FdUrd are presented.

View Article and Find Full Text PDF

The design and synthesis of 5-fluoro-6-[(2-aminoimidazol-1-yl)methyl]uracil (AIFU), a potent inhibitor of thymidine phosphorylase (TP) with K(i)-values of 11nM (ecTP) and 17nM (hTP), are described. Kinetic studies established that the type of inhibition of TP by AIFU is uncompetitive with respect to inorganic phosphate (or arsenate). The results obtained suggest that AIFU and other zwitterionic thymine analog inhibitors of TP act as transition state analogs, mimicking the anionic thymine leaving group, consistent with an S(N)2-type catalytic mechanism, and anchored by their protonated side chains to the enzyme-bound phosphate by electrostatic and H-bonding interactions.

View Article and Find Full Text PDF

A combination of mechanism-based and structure-based design strategies led to the synthesis of a series of 5- and 6-substituted uracil derivatives as potential inhibitors of thymidine phosphorlase/platelet derived endothelial cell growth factor (TP/PD-ECGF). Among those tested, 6-imidazolylmethyl-5-fluorouracil was found to be the most potent inhibitor with a Ki-value of 51 nM, representing a new class of 5-fluoropyrimidines with a novel mechanism of action.

View Article and Find Full Text PDF

R67 dihydrofolate reductase (DHFR) is a novel bacterial protein that possesses 222 symmetry and a single active site pore. Although the 222 symmetry implies that four symmetry-related binding sites must exist for each substrate as well as for each cofactor, various studies indicate only two molecules bind. Three possible combinations include two dihydrofolate molecules, two NADPH molecules, or one substrate plus one cofactor.

View Article and Find Full Text PDF

The syntheses of the ribo- and deoxyribonucleoside derivatives of 4-formyl-4-imidazolin-2-one, isosteric isomers of uridine and 2'-deoxyuridine, respectively, were carried out by ring contraction of the corresponding 5-bromouracil nucleosides, followed by conversion of the carboxyl side-chain of the products to the respective carboxaldehyde derivatives.

View Article and Find Full Text PDF

Evidence is presented that 5-imidazolylpropynyl-2'-deoxyuridine 5'-monophosphate (IP-dUMP) is a mechanism-based, irreversible inactivator of Escherichia coli thymidylate synthase (TS), which covalently modifies Tyr94 at the active site of the enzyme. The inactivation of TS was time and concentration dependent and did not require the folate cofactor. Due to the rapidity of the inactivation process, accurate kinetic parameters could be determined only in the presence of saturating concentrations (1000K(M)) of the competing substrate, dUMP.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: