Background: Understanding potential patterns in future population levels is crucial for anticipating and planning for changing age structures, resource and health-care needs, and environmental and economic landscapes. Future fertility patterns are a key input to estimation of future population size, but they are surrounded by substantial uncertainty and diverging methodologies of estimation and forecasting, leading to important differences in global population projections. Changing population size and age structure might have profound economic, social, and geopolitical impacts in many countries.
View Article and Find Full Text PDFMerkel cell polyomavirus (MCPyV), trichodysplasia spinulosa-associated polyomavirus (TSPyV), human polyomavirus 6 (HPyV6), and human polyomavirus 7 (HPyV7) are implicated in the pathogeneses of distinct hyperproliferative cutaneous growths and encode small tumor (sT) antigens. The current study demonstrates that the four sT antigens differentially regulate 4E-binding protein 1 (4E-BP1) serine 65 hyperphosphorylation. MCPyV and HPyV7 sT antigens were found to promote the presence of the hyperphosphorylated 4E-BP1-δ isoform, while TSPyV and HPyV6 sT antigens had no significant effects.
View Article and Find Full Text PDF