Brain Res Mol Brain Res
June 2005
Defective heme synthesis may cause acute porphyrias, which are associated with a wide array of neurological disturbances involving both the central and peripheral nervous systems. Thus, the understanding of the roles of heme in neuronal cell function may provide insights into the molecular events underlying the pathogenesis of neuropathies associated with defective heme synthesis. In this report, we use rat pheochromocytoma (PC12) clonal cells as a model system for studying the role of heme in neuronal cell survival.
View Article and Find Full Text PDFThe yeast heme activator protein Hap1 binds to DNA and activates transcription of genes encoding functions required for respiration and for controlling oxidative damage, in response to heme. Hap1 contains a DNA-binding domain with a C6 zinc cluster motif, a coiled-coil dimerization element, typical of the members of the yeast Gal4 family, and an acidic activation domain. The regulation of Hap1 transcription-activating activity is controlled by two classes of Hap1 elements, repression modules (RPM1-3) and heme-responsive motifs (HRM1-7).
View Article and Find Full Text PDFHeme plays central roles in oxygen sensing and utilization in many living organisms. In yeast, heme mediates the effect of oxygen on the expression of many genes involved in using or detoxifying oxygen. However, a direct link between intracellular heme level and oxygen concentration has not been vigorously established.
View Article and Find Full Text PDFHeme-responsive motifs (HRMs) mediate heme regulation of diverse regulatory proteins. The heme activator protein Hap1 contains seven HRMs, but only one of them, HRM7, is essential for heme activation of Hap1. To better understand the molecular basis underlying the biological significance of HRMs, we examined the effects of various mutations of HRM7 on Hap1.
View Article and Find Full Text PDFDefective heme synthesis in mammals has been suspected of causing neuropathy associated with porphyrias and lead poisoning. To determine the molecular action of heme in neuronal cells, we examined the effect of the inhibition of heme synthesis on nerve growth factor (NGF) signaling in PC12 cells. We found that the inhibition of heme synthesis by succinyl acetone interferes with NGF-induced neurite outgrowth in PC12 cells.
View Article and Find Full Text PDFHsp90 plays critical roles in the proper functioning of a wide array of eukaryotic signal transducers such as steroid receptors and tyrosine kinases. Hap1 is a naturally occurring substrate of Hsp90 in Saccharomyces cerevisiae. Hap1 transcriptional activity is precisely and stringently controlled by heme.
View Article and Find Full Text PDF