Hormonal and neuronal inputs to the brain control how much animals eat. The origins of this behavior were unclear, but in this issue of Cell Reports, Giez et al. describe specific neurons inhibiting feeding in evolutionary ancient animals without brain.
View Article and Find Full Text PDFThis article focuses on the roots of the organizer concept, which was developed by Hans Spemann during his studies of early embryonic development in amphibians. The fundamental properties of this axis-inducing signaling center have been elucidated through pioneering molecular research by Eddy De Robertis' laboratory and other researchers. Evolutionary comparisons have disclosed the presence of this signaling center, involving the interaction of Wnt and TGF-beta signaling pathways, existed not only in vertebrates but also in basal Metazoa such as Cnidaria.
View Article and Find Full Text PDFThe nervous system is the paradigm of a 'simple nerve net'. Nerve cells in , as in many cnidarian polyps, are organized in a nerve net extending throughout the body column. This nerve net is required for control of spontaneous behavior: elimination of nerve cells leads to polyps that do not move and are incapable of capturing and ingesting prey (Campbell, 1976).
View Article and Find Full Text PDFThe Wnt signal transduction pathway has essential roles in the formation of the primary body axis during development, cellular differentiation and tissue homeostasis. This animal-specific pathway has been studied extensively in contexts ranging from developmental biology to medicine for more than 40 years. Despite its physiological importance, an understanding of the evolutionary origin and primary function of Wnt signalling has begun to emerge only recently.
View Article and Find Full Text PDFStem cells are regulated not only by biochemical signals but also by biophysical properties of extracellular matrix (ECM). The ECM is constantly monitored and remodeled because the fate of stem cells can be misdirected when the mechanical interaction between cells and ECM is imbalanced. A well-defined ECM model for bone marrow-derived human mesenchymal stem cells (hMSCs) based on supramolecular hydrogels containing reversible host-guest crosslinks is fabricated.
View Article and Find Full Text PDFCnidarians (corals, hydras, jellyfish, sea anemones) are prey-devouring creatures with a simple nervous system, the function of which is largely unknown. A new study on the freshwater polyp Hydra has now uncovered the neuronal circuits that control its feeding behavior.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2023
The planula larvae of the sea anemone Aiptasia have so far not been reported to complete their life cycle by undergoing metamorphosis into adult forms. This has been a major obstacle in their use as a model for coral-dinoflagellate endosymbiosis. Here, we show that Aiptasia larvae actively feed on crustacean nauplii, displaying a preference for live prey.
View Article and Find Full Text PDFCnidarians are >600 million years old and are considered the sister group of Bilateria based on numerous molecular phylogenetic studies. Apart from Hydra, the genomes of all major clades of Cnidaria have been uncovered (e.g.
View Article and Find Full Text PDFThe extracellular matrix (ECM) plays crucial roles in animal development and diseases. Here, we report that Wnt/β-catenin signaling induces the ECM remodeling during axis formation. We determined the micro- and nanoscopic arrangement of fibrillar type I collagen along body axis using high-resolution microscopy and X-ray scattering.
View Article and Find Full Text PDFHydra has a regenerative capacity that is not limited to individual organs but encompasses the entire body. Various global and integrative genome, transcriptome and proteome approaches have shown that many of the signaling pathways and transcription factors present in vertebrates are already present in Cnidaria, the sister group of Bilateria, and are also activated in regeneration. It is now possible to investigate one of the central questions of regeneration biology, i.
View Article and Find Full Text PDFNematocysts are generated by secretion of proteins into a post-Golgi compartment. They consist of a capsule that elongates into a long tube, which is coiled inside the capsule matrix and expelled during its nano-second discharge deployed for prey capture. The driving force for discharge is an extreme osmotic pressure of 150 bar.
View Article and Find Full Text PDF's almost unlimited regenerative potential is based on Wnt signaling, but so far it is unknown how the injury stimulus is transmitted to discrete patterning fates in head and foot regenerates. We previously identified mitogen-activated protein kinases (MAPKs) among the earliest injury response molecules in head regeneration. Here, we show that three MAPKs-p38, c-Jun N-terminal kinases (JNKs), and extracellular signal-regulated kinases (ERKs)-are essential to initiate regeneration in independent of the wound position.
View Article and Find Full Text PDFCnidarians are fascinating creatures at the base of metazoan evolution possessing an almost unlimited regeneration capacity that has attracted the interest of researchers, from Abraham Trembley's discovery of regeneration to the present. They share a simple body plan and a high morphogenetic plasticity that has led to a broad spectrum of life cycles. With molecular genomics it became unequivocally clear that Cnidaria are the sister group of the Bilateria and how similar their molecular toolkit is to that of more complex animals.
View Article and Find Full Text PDFMulti-view deconvolution is a powerful image-processing tool for light sheet fluorescence microscopy, providing isotropic resolution and enhancing the image content. However, performing these calculations on large datasets is computationally demanding and time-consuming even on high-end workstations. Especially in long-time measurements on developing animals, huge amounts of image data are acquired.
View Article and Find Full Text PDFBackground: The Hydra head organizer acts as a signaling center that initiates and maintains the primary body axis in steady state polyps and during budding or regeneration. Wnt/beta-Catenin signaling functions as a primary cue controlling this process, but how Wnt ligand activity is locally restricted at the protein level is poorly understood. Here we report a proteomic analysis of Hydra head tissue leading to the identification of an astacin family proteinase as a Wnt processing factor.
View Article and Find Full Text PDFTransposable elements are one of the major contributors to genome-size differences in metazoans. Despite this, relatively little is known about the evolutionary patterns of element expansions and the element families involved. Here we report a broad genomic sampling within the genus , a freshwater cnidarian at the focal point of diverse research in regeneration, symbiosis, biogeography, and aging.
View Article and Find Full Text PDFNeuropeptides are a class of bioactive peptides shown to be involved in various physiological processes, including metabolism, development, and reproduction. Although neuropeptide candidates have been predicted from genomic and transcriptomic data, comprehensive characterization of neuropeptide repertoires remains a challenge owing to their small size and variable sequences. De novo prediction of neuropeptides from genome or transcriptome data is difficult and usually only efficient for those peptides that have identified orthologs in other animal species.
View Article and Find Full Text PDFReceptor-mediated endocytosis is an essential process in signalling pathways for activation of intracellular signalling cascades. One example is the Wnt signalling pathway that seems to depend on endocytosis of the ligand-receptor complex for initiation of Wnt signal transduction. To date, the roles of different endocytic pathways in Wnt signalling, molecular players and the kinetics of the process remain unclear.
View Article and Find Full Text PDFThe last common ancestor of Bilateria and Cnidaria is considered to develop a nervous system over 500 million years ago. Despite the long course of evolution, many of the neuron-related genes, which are active in Bilateria, are also found in the cnidarian Hydra. Thus, Hydra is a good model to study the putative primitive nervous system in the last common ancestor that had the great potential to evolve to a more advanced one.
View Article and Find Full Text PDFWe present the genome of the moon jellyfish Aurelia, a genome from a cnidarian with a medusa life stage. Our analyses suggest that gene gain and loss in Aurelia is comparable to what has been found in its morphologically simpler relatives-the anthozoan corals and sea anemones. RNA sequencing analysis does not support the hypothesis that taxonomically restricted (orphan) genes play an oversized role in the development of the medusa stage.
View Article and Find Full Text PDFThrombospondins (TSPs) are multidomain glycoproteins with complex matricellular functions in tissue homeostasis and remodeling. We describe a novel role of TSP as a Wnt signaling target in the basal eumetazoan Hydra. Proteome analysis identified Hydra magnipapillata TSP (HmTSP) as a major component of the cnidarian mesoglea.
View Article and Find Full Text PDFDistantly related animals have spectacularly different shapes and body plans, which can render it difficult to understand which of their body parts may have a shared evolutionary origin. Studying the molecular regulation of the development of these body parts during embryogenesis can help identifying commonalities that are not visible by eye.
View Article and Find Full Text PDFWe examine the origin of harpoon-like secretory organelles (nematocysts) in dinoflagellate protists. These ballistic organelles have been hypothesized to be homologous to similarly complex structures in animals (cnidarians); but we show, using structural, functional, and phylogenomic data, that nematocysts evolved independently in both lineages. We also recorded the first high-resolution videos of nematocyst discharge in dinoflagellates.
View Article and Find Full Text PDFThe nervous systems of cnidarians, pre-bilaterian animals that diverged close to the base of the metazoan radiation, are structurally simple and thus have great potential to reveal fundamental principles of neural circuits. Unfortunately, cnidarians have thus far been relatively intractable to electrophysiological and genetic techniques and consequently have been largely passed over by neurobiologists. However, recent advances in molecular and imaging methods are fueling a renaissance of interest in and research into cnidarians nervous systems.
View Article and Find Full Text PDF