Publications by authors named "Thomas Hoeg-Jensen"

The risk of inducing hypoglycaemia (low blood glucose) constitutes the main challenge associated with insulin therapy for diabetes. Insulin doses must be adjusted to ensure that blood glucose values are within the normal range, but matching insulin doses to fluctuating glucose levels is difficult because even a slightly higher insulin dose than needed can lead to a hypoglycaemic incidence, which can be anything from uncomfortable to life-threatening. It has therefore been a long-standing goal to engineer a glucose-sensitive insulin that can auto-adjust its bioactivity in a reversible manner according to ambient glucose levels to ultimately achieve better glycaemic control while lowering the risk of hypoglycaemia.

View Article and Find Full Text PDF

Strong-binding host-guest pairings in aqueous media have potential as "supramolecular glues" in biomedical techniques, complementing the widely-used (strept)avidin-biotin combination. We have previously found that squaraine dyes are bound very strongly by tetralactam macrocycles possessing anthracenyl units as cavity walls. Here we show that replacing the anthracenes with pentacyclic 5,7,12,14-tetrahydro-5,7,12,14-tetraoxapentacene (TOP) units generates receptors which bind squaraines with increased affinities (around K =10  m ) and improved selectivities.

View Article and Find Full Text PDF

Insulin derivatives provide new functions that are distinctive from native insulin. We investigated insulin modifications on the C-terminal A chain with insulin receptor (IR) peptide binders and presented a full and potent IR antagonist. We prepared insulin precursors featuring a sortase A (SrtA) recognition sequence, LPETGG, at the C-terminal A chain and used a SrtA-mediated ligation method to synthesize insulin derivatives.

View Article and Find Full Text PDF

Aims/hypothesis: Normalisation of blood glucose in individuals with diabetes is recommended to reduce development of diabetic complications. However, risk of severe hypoglycaemia with intensive insulin therapy is a major obstacle that prevents many individuals with diabetes from obtaining the recommended reduction in HbA. Inhibition of glucagon receptor signalling and liver-preferential insulin action have been shown individually to have beneficial effects in preclinical models and individuals with diabetes (i.

View Article and Find Full Text PDF

l-Glucose has recently been investigated as an artificial sweetener, but no facile method is established for the measurement of l-glucose. The commercial probe Eversense employs a fluorescent diboronate in a small device for the optical monitoring of d-glucose in people with diabetes. Being achiral, the Eversense probe should be able to detect l-glucose as well as native d-glucose, but the probe is designed for fixation under the skin, and our attempts to use the probe at laboratory conditions failed, as the probe was resetting when moved between compartments.

View Article and Find Full Text PDF

The life-saving discovery of insulin in Toronto in 1921 is one of the most impactful achievements in medical history, at the time being hailed as a miracle treatment for diabetes. The insulin molecule itself, however, is poorly amenable as a pharmacological intervention, and the formidable challenge of optimizing insulin therapy has been ongoing for a century. We review early academic insights into insulin structure and its relation to self-association and receptor binding, as well as recombinant biotechnology, which have all been seminal for drug design.

View Article and Find Full Text PDF

Here, we describe the molecular engineering of insulin icodec to achieve a plasma half-life of 196 h in humans, suitable for once-weekly subcutaneously administration. Insulin icodec is based on re-engineering of the ultra-long oral basal insulin OI338 with a plasma half-life of 70 h in humans. This systematic re-engineering was accomplished by (1) further increasing the albumin binding by changing the fatty diacid from a 1,18-octadecanedioic acid (C18) to a 1,20-icosanedioic acid (C20) and (2) further reducing the insulin receptor affinity by the B16Tyr → His substitution.

View Article and Find Full Text PDF

Recently, the first basal oral insulin (OI338) was shown to provide similar treatment outcomes to insulin glargine in a phase 2a clinical trial. Here, we report the engineering of a novel class of basal oral insulin analogues of which OI338, , in this publication, was successfully tested in the phase 2a clinical trial. We found that the introduction of two insulin substitutions, A14E and B25H, was needed to provide increased stability toward proteolysis.

View Article and Find Full Text PDF

International charities and health care organizations advocate regular physical activity for health benefit in people with type 1 diabetes. Clinical expert and international diabetes organizations' position statements support the management of good glycemia during acute physical exercise by adjusting exogenous insulin and/or carbohydrate intake. Yet research has detailed, and patients frequently report, variable blood glucose responses following both the same physical exercise session and insulin to carbohydrate alteration.

View Article and Find Full Text PDF

Background: Hypoglycemia, the condition of low blood sugar, is a common occurance in people with diabetes using insulin therapy. Protecting against hypoglycaemia by engineering an insulin preparation that can auto-adjust its biological activity to fluctuating blood glucose levels has been pursued since the 1970s, but despite numerous publications, no system that works well enough for practical use has reached clinical practise.

Scope Of Review: This review will summarise and scrutinise known approaches for producing glucose-sensitive insulin therapies.

View Article and Find Full Text PDF

Covalent cross-linking of biomolecules can be useful in pursuit of tissue targeting or dual targeting of two receptors on cell surfaces for avidity effects. Long linkers (>10 kDa) can be advantageous for such purposes, and poly(ethylene glycol) (PEG) linkers are most commonly used due to the high aqueous solubility of PEG and its relative inertness toward biological targets. However, PEG is non-biodegradable, and available PEG linkers longer than 5 kDa are heterogeneous (polydisperse), which means that conjugates based on such materials will be mixtures.

View Article and Find Full Text PDF

B29N-lithocholyl-γ-l-βGlu-desB30 human insulin [NN344] belongs to a group of insulins with fatty acid or sterol modifications. These insulin analogues have been found to form subcutaneous depots upon injection and hereby have a protracted release profile . In the present study, B29N-lithocholyl-γ-l-Glu-desB30 human insulin was investigated using in-solution small-angle X-ray scattering (SAXS) at chemical conditions designed to mimic three stages during treatment : in-vial/pen, postinjection, and longer times after injection.

View Article and Find Full Text PDF

We recently reported that in rodent models of type 2 diabetes (T2D), a single intracerebroventricular (icv) injection of fibroblast growth factor 1 (FGF1) induces remission of hyperglycemia that is sustained for weeks. To clarify the peripheral mechanisms underlying this effect, we used the Zucker diabetic fatty / rat model of T2D, which, like human T2D, is characterized by progressive deterioration of pancreatic β-cell function after hyperglycemia onset. We report that although icv FGF1 injection delays the onset of β-cell dysfunction in these animals, it has no effect on either glucose-induced insulin secretion or insulin sensitivity.

View Article and Find Full Text PDF

Controlled self-assembly (SA) of proteins offers the possibility to tune their properties or to create new materials. Herein, we present the synthesis of a modified human insulin (HI) with two distinct metal-ion binding sites, one native, the other abiotic, enabling hierarchical SA through coordination with two different metal ions. Selective attachment of an abiotic 2,2'-bipyridine (bipy) ligand to HI, yielding HI-bipy, enabled Zn(II)-binding hexamers to SA into trimers of hexamers, [[HI-bipy]6]3, driven by octahedral coordination to a Fe(II)  ion.

View Article and Find Full Text PDF

Ethynylation of various tryptophan-containing peptides and a single model protein was achieved using Waser's reagent, 1-[(triisopropylsilyl)ethynyl]-1,2-benziodoxol-3(1 H)-one (TIPS-EBX), under gold(I) catalysis. It was demonstrated by NMR that the ethynylation occurred selectively at the C2-position of the indole ring of tryptophan. Further, MS/MS showed that the tryptophan residues could be modified selectively with ethynyl functionalities even when the tryptophan was present as a part of the protein.

View Article and Find Full Text PDF

Purpose: To study the self-association states of insulin degludec and insulin aspart alone and combined in pharmaceutical formulation and under conditions simulating the subcutaneous depot.

Methods: Formulations were made of 0.6 mM degludec at 3 and 5 Zn/6 insulin monomers, and 0.

View Article and Find Full Text PDF

Precise control of the oligomeric state of proteins is of central importance for biological function and for the properties of biopharmaceutical drugs. Here, the self-assembly of 2,2'-bipyridine conjugated monomeric insulin analogues, induced through coordination to divalent metal ions, was studied. This protein drug system was designed to form non-native homo-oligomers through selective coordination of two divalent metal ions, Fe(II) and Zn(II), respectively.

View Article and Find Full Text PDF

Purpose: Basal insulins with improved kinetic properties can potentially be produced using acylation by fatty acids that enable soluble, high-molecular weight complexes to form post-injection. A series of insulins, acylated at B29 with fatty acids via glutamic acid spacers, were examined to deduce the structural requirements.

Methods: Self-association, molecular masses and hexameric conformations of the insulins were studied using size exclusion chromatography monitored by UV or multi-angle light scattering and dynamic light scattering, and circular dichroism spectroscopy (CDS) in environments (changing phenol and zinc concentration) simulating a pharmaceutical formulation and changes following subcutaneous injection.

View Article and Find Full Text PDF

The self-assembly of biopharmaceutical peptides into multimeric, nanoscale objects, as well as their disassembly to monomers, is central for their mode of action. Here, we describe a bioorthogonal strategy, using a non-native recognition principle, for control of protein self-assembly based on intermolecular fluorous interactions and demonstrate it for the small protein insulin. Perfluorinated alkyl chains of varying length were attached to desB30 human insulin by acylation of the ε-amine of the side-chain of LysB29.

View Article and Find Full Text PDF

Self-assembly of proteins mediated by metal ions is crucial in biological systems and a better understanding and novel strategies for its control are important. An abiotic metal ion ligand in a protein offers the prospect of control of the oligomeric state, if a selectivity over binding to the native side chains can be achieved. Insulin binds Zn(II) to form a hexamer, which is important for its storage in vivo and in drug formulations.

View Article and Find Full Text PDF

Backbone cyclic insulin was designed and prepared by reverse proteolysis in partial organic solvent of a single-chain precursor expressed in yeast. The precursor contains two loops to bridge the two chains of native insulin. The cyclisation method uses Achromobacter lyticus protease and should be generally applicable to proteins with C-terminal lysine and proximal N-terminal.

View Article and Find Full Text PDF

The structural registration of chemically modified macromolecules is vital for the development of biopharmaceuticals. However, registration and search of such complex molecules has so far posed formidable challenges performance-wise, since today's chemistry-oriented databases do not scale well to macromolecules. As a practical consequence, macromolecules tend to be stored in protein databases with a focus on protein sequence only, and salient chemistry details are therefore lost.

View Article and Find Full Text PDF

Insulin is a peptide hormone consisting of 51 amino acids in two chains with three disulfide bridges. Human insulin and various analogues are used for the treatment of diabetes and are produced recombinantly at ton scale. Herein, we report the chemical synthesis of insulin by the step-wise, Fmoc-based, solid-phase synthesis of single-chain precursors with solubilising extensions, which under redox conditions, spontaneously fold with the correct pairing of the three disulfide bridges.

View Article and Find Full Text PDF

4,5-dimethoxy-2-mercaptobenzylamine (Dmmb) has been protected by acetamidomethyl (Acm) and incorporated into a peptide thioester for use in tandem native chemical ligation. Upon ligation between the thioester and a Cys-peptide, Acm was removed from Dmmb using silver acetate, and a second ligation reaction was done at the Dmmb position. Dmmb removal using TFMSA-TFA effected overall tandem ligation at X-Cys and Gly-Gly.

View Article and Find Full Text PDF