Publications by authors named "Thomas Hladish"

The onset of the COVID-19 pandemic drove a widespread, often uncoordinated effort by research groups to develop mathematical models of SARS-CoV-2 to study its spread and inform control efforts. The urgent demand for insight at the outset of the pandemic meant early models were typically either simple or repurposed from existing research agendas. Our group predominantly uses agent-based models (ABMs) to study fine-scale intervention scenarios.

View Article and Find Full Text PDF

We evaluate approaches to vaccine distribution using an agent-based model of human activity and COVID-19 transmission calibrated to detailed trends in cases, hospitalizations, deaths, seroprevalence, and vaccine breakthrough infections in Florida, USA. We compare the incremental effectiveness for four different distribution strategies at four different levels of vaccine supply, starting in late 2020 through early 2022. Our analysis indicates that the best strategy to reduce severe outcomes would be to actively target high disease-risk individuals.

View Article and Find Full Text PDF

Epidemic data are often difficult to interpret due to inconsistent detection and reporting. As these data are critically relied upon to inform policy and epidemic projections, understanding reporting trends is similarly important. Early reporting of the COVID-19 pandemic in particular is complicated, due to changing diagnostic and testing protocols.

View Article and Find Full Text PDF

Our ability to forecast epidemics far into the future is constrained by the many complexities of disease systems. Realistic longer-term projections may, however, be possible under well-defined scenarios that specify the future state of critical epidemic drivers. Since December 2020, the U.

View Article and Find Full Text PDF

Our ability to forecast epidemics more than a few weeks into the future is constrained by the complexity of disease systems, our limited ability to measure the current state of an epidemic, and uncertainties in how human action will affect transmission. Realistic longer-term projections (spanning more than a few weeks) may, however, be possible under defined scenarios that specify the future state of critical epidemic drivers, with the additional benefit that such scenarios can be used to anticipate the comparative effect of control measures. Since December 2020, the U.

View Article and Find Full Text PDF

Background: Decision-makers impose COVID-19 mitigations based on public health indicators such as reported cases, which are sensitive to fluctuations in supply and demand for diagnostic testing, and hospital admissions, which lag infections by up to two weeks. Imposing mitigations too early has unnecessary economic costs while imposing too late leads to uncontrolled epidemics with unnecessary cases and deaths. Sentinel surveillance of recently-symptomatic individuals in outpatient testing sites may overcome biases and lags in conventional indicators, but the minimal outpatient sentinel surveillance system needed for reliable trend estimation remains unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Policymakers face challenges in making decisions with limited information and conflicting predictions from different models, especially during crises like the COVID-19 pandemic.
  • A study brought together multiple modeling teams to assess reopening strategies in a mid-sized U.S. county, revealing consistent rankings for interventions despite variations in projection magnitudes.
  • The findings indicated that reopening workplaces could lead to a significant increase in infections, while restrictions could greatly reduce cumulative infections, highlighting the trade-offs between public health and economic activity with no optimal reopening strategy identified.
View Article and Find Full Text PDF

We evaluate approaches to vaccine distribution using an agent-based model of human activity and COVID-19 transmission calibrated to detailed trends in cases, hospitalizations, deaths, seroprevalence, and vaccine breakthrough infections in Florida, USA. We compare the incremental effectiveness for four different distribution strategies at four different levels of vaccine availability, reflecting different income settings' historical COVID-19 vaccine distribution. Our analysis indicates that the best strategy to reduce severe outcomes is to actively target high disease-risk individuals.

View Article and Find Full Text PDF

Polio can circulate unobserved in regions that are challenging to monitor. To assess the probability of silent circulation, simulation models can be used to understand transmission dynamics when detection is unreliable. Model assumptions, however, impact the estimated probability of silent circulation.

View Article and Find Full Text PDF

Keystone virus (KEYV) is an under-studied orthobunyavirus that is transmitted via both horizontal and vertical cycles involving various mosquito species and vertebrate hosts. Historical evidence indicates that KEYV causes sub-clinical infections in humans, and some case studies draw links between this virus and encephalitis. Given KEYV's potential to cause human infections, it is plausible that it causes an under-appreciated proportion of both generic viral infections and unidentified viral encephalitis cases.

View Article and Find Full Text PDF

In this report, we use a detailed simulation model to assess and project the COVID-19 epidemic in Florida. The model is a data-driven, stochastic, discrete-time, agent based model with an explicit representation of people and places. Using the model, we find that the omicron variant wave in Florida is likely to cause many more infections than occurred during the delta variant wave.

View Article and Find Full Text PDF

Background: Infectious disease outbreaks present unique challenges to study designs for vaccine evaluation. Test-negative design (TND) studies have previously been used to estimate vaccine effectiveness and have been proposed for Ebola virus disease (EVD) vaccines. However, there are key differences in how cases and controls are recruited during outbreaks and pandemics of novel pathogens, whcih have implications for the reliability of effectiveness estimates using this design.

View Article and Find Full Text PDF

Comparison of coronavirus disease 2019 (COVID-19) case numbers over time and between locations is complicated by limits to virological testing to confirm severe acute respiratory syndrome coronavirus 2 infection. The proportion of tested individuals who have tested positive (test-positive proportion, TPP) can potentially be used to inform trends in incidence. We propose a model for testing in a population experiencing an epidemic of COVID-19 and derive an expression for TPP in terms of well-defined parameters related to testing and presence of other pathogens causing COVID-19-like symptoms.

View Article and Find Full Text PDF

Policymakers make decisions about COVID-19 management in the face of considerable uncertainty. We convened multiple modeling teams to evaluate reopening strategies for a mid-sized county in the United States, in a novel process designed to fully express scientific uncertainty while reducing linguistic uncertainty and cognitive biases. For the scenarios considered, the consensus from 17 distinct models was that a second outbreak will occur within 6 months of reopening, unless schools and non-essential workplaces remain closed.

View Article and Find Full Text PDF

Background: Current urban vector control strategies have failed to contain dengue epidemics and to prevent the global expansion of Aedes-borne viruses (ABVs: dengue, chikungunya, Zika). Part of the challenge in sustaining effective ABV control emerges from the paucity of evidence regarding the epidemiological impact of any Aedes control method. A strategy for which there is limited epidemiological evidence is targeted indoor residual spraying (TIRS).

View Article and Find Full Text PDF

Viruses transmitted by mosquitoes, such as dengue, Zika, and chikungunya, have expanding ranges and seem unabated by current vector control programs. Effective control of these pathogens likely requires integrated approaches. We evaluated dengue management options in an endemic setting that combine novel vector control and vaccination using an agent-based model for Yucatán, Mexico, fit to 37 y of data.

View Article and Find Full Text PDF

The World Health Organization (WHO) currently recommends pre-screening for past infection prior to administration of the only licensed dengue vaccine, CYD-TDV. Using a threshold modelling analysis, we identify settings where this guidance prohibits positive net-benefits, and are thus unfavourable. Generally, however, our model shows test-then-vaccinate strategies can improve CYD-TDV economic viability: effective testing reduces unnecessary vaccination costs while increasing health benefits.

View Article and Find Full Text PDF

As polio-endemic countries move towards elimination, infrequent first infections and incomplete surveillance make it difficult to determine when the virus has been eliminated from the population. Eichner and Dietz [, 143, 8 (1996)] proposed a model to estimate the probability of silent polio circulation depending upon when the last paralytic case was detected. Using the same kind of stochastic model they did, we additionally model waning polio immunity in the context of isolated, small, and unvaccinated populations.

View Article and Find Full Text PDF

Background: Historically, mosquito control programs successfully helped contain malaria and yellow fever, but recent efforts have been unable to halt the spread of dengue, chikungunya, or Zika, all transmitted by Aedes mosquitoes. Using a dengue transmission model and results from indoor residual spraying (IRS) field experiments, we investigated how IRS-like campaign scenarios could effectively control dengue in an endemic setting.

Methods And Findings: In our model, we found that high levels of household coverage (75% treated once per year), applied proactively before the typical dengue season could reduce symptomatic infections by 89.

View Article and Find Full Text PDF

Response to Zika virus (ZIKV) invasion in Brazil lagged a year from its estimated February 2014 introduction, and was triggered by the occurrence of severe congenital malformations. Dengue (DENV) and chikungunya (CHIKV) invasions tend to show similar response lags. We analyzed geo-coded symptomatic case reports from the city of Merida, Mexico, with the goal of assessing the utility of historical DENV data to infer CHIKV and ZIKV introduction and propagation.

View Article and Find Full Text PDF

Background: Large Phase III trials across Asia and Latin America have recently demonstrated the efficacy of a recombinant, live-attenuated dengue vaccine (Dengvaxia) over the first 25 mo following vaccination. Subsequent data collected in the longer-term follow-up phase, however, have raised concerns about a potential increase in hospitalization risk of subsequent dengue infections, in particular among young, dengue-naïve vaccinees. We here report predictions from eight independent modelling groups on the long-term safety, public health impact, and cost-effectiveness of routine vaccination with Dengvaxia in a range of transmission settings, as characterised by seroprevalence levels among 9-y-olds (SP9).

View Article and Find Full Text PDF

Dengue vaccines will soon provide a new tool for reducing dengue disease, but the effectiveness of widespread vaccination campaigns has not yet been determined. We developed an agent-based dengue model representing movement of and transmission dynamics among people and mosquitoes in Yucatán, Mexico, and simulated various vaccine scenarios to evaluate effectiveness under those conditions. This model includes detailed spatial representation of the Yucatán population, including the location and movement of 1.

View Article and Find Full Text PDF

Background: Multiple waves of transmission during infectious disease epidemics represent a major public health challenge, but the ecological and behavioral drivers of epidemic resurgence are poorly understood. In theory, community structure—aggregation into highly intraconnected and loosely interconnected social groups—within human populations may lead to punctuated outbreaks as diseases progress from one community to the next. However, this explanation has been largely overlooked in favor of temporal shifts in environmental conditions and human behavior and because of the difficulties associated with estimating large-scale contact patterns.

View Article and Find Full Text PDF

Background: Contact network models have become increasingly common in epidemiology, but we lack a flexible programming framework for the generation and analysis of epidemiological contact networks and for the simulation of disease transmission through such networks.

Results: Here we present EpiFire, an applications programming interface and graphical user interface implemented in C++, which includes a fast and efficient library for generating, analyzing and manipulating networks. Network-based percolation and chain-binomial simulations of susceptible-infected-recovered disease transmission, as well as traditional non-network mass-action simulations, can be performed using EpiFire.

View Article and Find Full Text PDF

Background: Evolutionary analysis provides a formal framework for comparative analysis of genomic and other data. In evolutionary analysis, observed data are treated as the terminal states of characters that have evolved (via transitions between states) along the branches of a tree. The NEXUS standard of Maddison, et al.

View Article and Find Full Text PDF