Publications by authors named "Thomas Hillerton"

Single-cell data is increasingly used for gene regulatory network (GRN) inference, and benchmarks for this have been developed based on simulated data. However, existing single-cell simulators cannot model the effects of gene perturbations. A further challenge lies in generating large-scale GRNs that often struggle with computational and stability issues.

View Article and Find Full Text PDF

The gene regulatory network (GRN) of a cell executes genetic programs in response to environmental and internal cues. Two distinct classes of methods are used to infer regulatory interactions from gene expression: those that only use observed changes in gene expression, and those that use both the observed changes and the perturbation design, i.e.

View Article and Find Full Text PDF

Accurate inference of gene regulatory networks (GRN) is an essential component of systems biology, and there is a constant development of new inference methods. The most common approach to assess accuracy for publications is to benchmark the new method against a selection of existing algorithms. This often leads to a very limited comparison, potentially biasing the results, which may stem from tuning the benchmark's properties or incorrect application of other methods.

View Article and Find Full Text PDF

The regulatory relationships between genes and proteins in a cell form a gene regulatory network (GRN) that controls the cellular response to changes in the environment. A number of inference methods to reverse engineer the original GRN from large-scale expression data have recently been developed. However, the absence of ground-truth GRNs when evaluating the performance makes realistic simulations of GRNs necessary.

View Article and Find Full Text PDF

Motivation: Inferring an accurate gene regulatory network (GRN) has long been a key goal in the field of systems biology. To do this, it is important to find a suitable balance between the maximum number of true positive and the minimum number of false-positive interactions. Another key feature is that the inference method can handle the large size of modern experimental data, meaning the method needs to be both fast and accurate.

View Article and Find Full Text PDF

Motivation: Accurate inference of gene regulatory interactions is of importance for understanding the mechanisms of underlying biological processes. For gene expression data gathered from targeted perturbations, gene regulatory network (GRN) inference methods that use the perturbation design are the top performing methods. However, the connection between the perturbation design and gene expression can be obfuscated due to problems, such as experimental noise or off-target effects, limiting the methods' ability to reconstruct the true GRN.

View Article and Find Full Text PDF

The interactions among the components of a living cell that constitute the gene regulatory network (GRN) can be inferred from perturbation-based gene expression data. Such networks are useful for providing mechanistic insights of a biological system. In order to explore the feasibility and quality of GRN inference at a large scale, we used the L1000 data where ~1000 genes have been perturbed and their expression levels have been quantified in 9 cancer cell lines.

View Article and Find Full Text PDF