Life operates out of equilibrium to enable various sophisticated behaviors. Synthetic chemists have strived to mimic biological nonequilibrium systems in such fields as autonomous molecular machines and dissipative self-assembly. Central to these efforts has been the development of new chemical reaction cycles, which drive systems out of equilibrium by conversion of chemical fuel into waste species.
View Article and Find Full Text PDFThis paper addresses two common challenges in analyzing spatial epidemiological data, specifically disease incidence rates recorded over small areas: filtering noise caused by small local population sizes and deriving estimates at different spatial scales. Geostatistical techniques, including Poisson kriging (PK), have been used to address these issues by accounting for spatial correlation patterns and neighboring observations in smoothing and changing spatial support. However, PK has a limitation in that it can generate unrealistic rates that are either negative or greater than 100%.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2024
Chemically fueled chemical reaction networks (CRNs) are essential in controlling dissipative self-assembly. A key challenge in the field is to store chemical fuel-precursors or "pre-fuels" in the system that are converted into activating or deactivating fuels in a catalytically controlled CRN. In addition, real-time control over catalysis in a CRN by light is highly desirable, but so far not yet achieved.
View Article and Find Full Text PDFObjectives: Most renal tumours can be treated with a partial nephrectomy, with robot-assisted partial nephrectomy becoming the new gold standard. This procedure is challenging to learn in a live setting, especially the enucleation and renorraphy phases. In this study, we attempted to evaluate face, content, and preliminary construct validity of a 3D-printed silicone renal tumour model in robotic training for robot-assisted partial nephrectomy.
View Article and Find Full Text PDFThe increasing need to find alternative stocks of critical raw materials drives to revisit the residues generated during the former production of mineral and metallic raw materials. Geophysical methods contribute to the sustainable characterization of metallurgical residues inferring on their composition, zonation and volume(s) estimation. Nevertheless, more quantitative approaches are needed to link geochemical or mineralogical analyses with the geophysical data.
View Article and Find Full Text PDFThe COVID-19 pandemic continues to pose a substantial threat to human lives and is likely to do so for years to come. Despite the availability of vaccines, searching for efficient small-molecule drugs that are widely available, including in low- and middle-income countries, is an ongoing challenge. In this work, we report the results of an open science community effort, the "Billion molecules against COVID-19 challenge", to identify small-molecule inhibitors against SARS-CoV-2 or relevant human receptors.
View Article and Find Full Text PDFShunts, alternative pathways in chemical reaction networks (CRNs), are ubiquitous in nature, enabling adaptability to external and internal stimuli. We introduce a CRN in which the recovery of Michael-accepting species is driven by oxidation chemistry. Using weak oxidants can enable access to two shunts within this CRN with different kinetics and a reduced number of side reactions compared to the main cycle that is driven by strong oxidants.
View Article and Find Full Text PDFComplex non-equilibrium phase behaviors are a hallmark of natural self-assembling systems. Here we show how intricate phase transitions can be achieved through a chemically fueled reaction cycle to yield autonomous sol→gel→sol→gel→sol transitions. A relay of chemical transformations based on thiazinane metathesis leads to two consecutive transient gelations in a closed system.
View Article and Find Full Text PDFSupramolecular polymerization can be controlled in space and time by chemical fuels. A nonassembled monomer is activated by the fuel and subsequently self-assembles into a polymer. Deactivation of the molecule either in solution or inside the polymer leads to disassembly.
View Article and Find Full Text PDFThe frictional forces of a viscous liquid flow are a major energy loss issue and severely limit microfluidics practical use. Reducing this drag by more than a few tens of percent remain elusive. Here, we show how cylindrical liquid-in-liquid flow leads to drag reduction of 60-99% for sub-mm and mm-sized channels, regardless of whether the viscosity of the transported liquid is larger or smaller than that of the confining one.
View Article and Find Full Text PDFNarcissistic self-sorting in supramolecular assemblies can help to construct materials with more complex hierarchies. Whereas controlled changes in pH or temperature have been used to this extent for two-component self-sorted gels, here we show that a chemically fueled approach can provide three-component materials with high precision. The latter materials have interesting mechanical properties, such as enhanced or suppressed stiffness, and intricate multistep gelation kinetics.
View Article and Find Full Text PDFControlling supramolecular polymerization is of fundamental importance to create advanced materials and devices. Here we show that the thermodynamic equilibrium of Gd-bearing supramolecular rod networks is shifted reversibly at room temperature in a static magnetic field of up to 2 T. Our approach opens opportunities to control the structure formation of other supramolecular or coordination polymers that contain paramagnetic ions.
View Article and Find Full Text PDFSpin orbit torque driven switching is a favorable way to manipulate nanoscale magnetic objects for both memory and wireless communication devices. The critical current required to switch from one magnetic state to another depends on the geometry and the intrinsic properties of the materials used, which are difficult to control locally. Here, we demonstrate how focused helium ion beam irradiation can modulate the local magnetic anisotropy of a Co thin film at the microscopic scale.
View Article and Find Full Text PDFWhen miniaturizing fluidic circuitry, the solid walls of the fluid channels become increasingly important because they limit the flow rates achievable for a given pressure drop, and they are prone to fouling. Approaches for reducing the wall interactions include hydrophobic coatings, liquid-infused porous surfaces, nanoparticle surfactant jamming, changes to surface electronic structure, electrowetting, surface tension pinning and use of atomically flat channels. A better solution may be to avoid the solid walls altogether.
View Article and Find Full Text PDFNature uses catalysis as an indispensable tool to control assembly and reaction cycles in vital non-equilibrium supramolecular processes. For instance, enzymatic methionine oxidation regulates actin (dis-)assembly, and catalytic guanosine triphosphate hydrolysis is found in tubulin (dis-)assembly. Here we present a completely artificial reaction cycle which is driven by a chemical fuel that is catalytically obtained from a "pre-fuel".
View Article and Find Full Text PDFFuel-driven reaction cycles are found in biological systems to control the assembly and disassembly of supramolecular materials such as the cytoskeleton. Fuel molecules can bind noncovalently to a self-assembling building block or they can react with it, resulting in covalent modifications. Overall the fuel can either switch the self-assembly process on or off.
View Article and Find Full Text PDFMechanical interactions of chiral objects with their environment are well-established at the macroscale, like a propeller on a plane or a rudder on a boat. At the colloidal scale and smaller, however, such interactions are often not considered or deemed irrelevant due to Brownian motion. As we will show in this tutorial review, mechanical interactions do have significant effects on chiral objects at all scales, and can be induced using shearing surfaces, collisions with walls or repetitive microstructures, fluid flows, or by applying electrical or optical forces.
View Article and Find Full Text PDFThe most basic function of synthetic microenvironments for tissue engineering is to act as a physical substrate for cell attachment, migration, and proliferation, similar to the natural cell environment. Functionalization of supramolecular materials with guest compounds that display the same recognition moieties is a common strategy to introduce biofunctionality. However, besides a robust interaction with the material, a certain level of dynamics needs to be conserved for an adaptive interface toward the living environment.
View Article and Find Full Text PDFSupramolecular polymers, such as microtubules, operate under non-equilibrium conditions to drive crucial functions in cells, such as motility, division and organelle transport. In vivo and in vitro size oscillations of individual microtubules (dynamic instabilities) and collective oscillations have been observed. In addition, dynamic spatial structures, like waves and polygons, can form in non-stirred systems.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2018
Controlling supramolecular growth at solid surfaces is of great importance to expand the scope of supramolecular materials. A dendritic benzene-1,3,5-tricarboxamide peptide conjugate is described in which assembly can be triggered by a pH jump. Stopped-flow kinetics and mathematical modeling provide a quantitative understanding of the nucleation, elongation, and fragmentation behavior in solution.
View Article and Find Full Text PDFLiving systems use fuel-driven supramolecular polymers such as actin to control important cell functions. Fuel molecules like ATP are used to control when and where such polymers should assemble and disassemble. The cell supplies fresh ATP to the cytosol and removes waste products to sustain steady states.
View Article and Find Full Text PDFBuilding on our ability to design and synthesise molecules and our understanding of the noncovalent interactions between these molecules, the chemical sciences are currently entering the new territory of Systems Chemistry. This young field aims to develop complex molecular systems showing emergent properties; i.e.
View Article and Find Full Text PDF