Cellular mechanotransduction is a complex physiological process that integrates alterations in the external environment with cellular behaviours. In recent years, the role of the nucleus in mechanotransduction has gathered increased attention. Our research investigated the involvement of lamin A/C, a component of the nuclear envelope, in the mechanotransduction of macrophages under compressive force.
View Article and Find Full Text PDFMany enzymes assemble into homomeric protein complexes comprising multiple copies of one protein. Because structural form is usually assumed to follow function in biochemistry, these assemblies are thought to evolve because they provide some functional advantage. In many cases, however, no specific advantage is known and, in some cases, quaternary structure varies among orthologs.
View Article and Find Full Text PDFThe mitochondrial citrate synthase (mCS) purified from the ciliate Tetrahymena thermophila has been reported to form intermediate-filament-like structures during conjugation and to self-assemble into fibers when recombinantly expressed. This would represent a rare example of a tractable and recent origin of a novel cytoskeletal element. In an attempt to investigate the evolutionary emergence of this behavior, we re-investigated the ability of Tetrahymena's mCS to form filaments in vivo.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is a lethal chronic lung disease characterized by aberrant intercellular communication, extracellular matrix deposition, and destruction of functional lung tissue. While extracellular vesicles (EVs) accumulate in the IPF lung, their cargo and biological effects remain unclear. We interrogated the proteome of EV and non-EV fractions during pulmonary fibrosis and characterized their contribution to fibrosis.
View Article and Find Full Text PDFRecent metagenomic studies have identified numerous lineages of hydrogen-dependent, obligately methyl-reducing methanogens. Yet, only a few representatives have been isolated in pure culture. Here, we describe six new species with this capability in the family Methanosarcinaceae (order Methanosarcinales), which makes up a substantial fraction of the methanogenic community in arthropod guts.
View Article and Find Full Text PDFMany enzymes assemble into homomeric protein complexes comprising multiple copies of one protein. Because structural form is usually assumed to follow function in biochemistry, these assemblies are thought to evolve because they provide some functional advantage. In many cases, however, no specific advantage is known and, in some cases, quaternary structure varies among orthologs.
View Article and Find Full Text PDFThe continuous emergence of multidrug-resistant bacterial pathogens poses a major global healthcare challenge, with Klebsiella pneumoniae being a prominent threat. We conducted a comprehensive study on K. pneumoniae's antibiotic resistance mechanisms, focusing on outer membrane vesicles (OMVs) and polymyxin, a last-resort antibiotic.
View Article and Find Full Text PDFFractals are patterns that are self-similar across multiple length-scales. Macroscopic fractals are common in nature; however, so far, molecular assembly into fractals is restricted to synthetic systems. Here we report the discovery of a natural protein, citrate synthase from the cyanobacterium Synechococcus elongatus, which self-assembles into Sierpiński triangles.
View Article and Find Full Text PDFOn-demand biomanufacturing has the potential to improve healthcare and self-sufficiency during space missions. Cell-free transcription and translation reactions combined with DNA blueprints can produce promising therapeutics like bacteriophages and virus-like particles. However, how space conditions affect the synthesis and self-assembly of such complex multi-protein structures is unknown.
View Article and Find Full Text PDFPeroxisomes are organelles with crucial functions in oxidative metabolism. To correctly target to peroxisomes, proteins require specialized targeting signals. A mystery in the field is the sorting of proteins that carry a targeting signal for peroxisomes and as well as for other organelles, such as mitochondria or the endoplasmic reticulum (ER).
View Article and Find Full Text PDFBackground: Sepsis is one of the leading causes of death worldwide and characterized by blood stream infections associated with a dysregulated host response and endothelial cell (EC) dysfunction. Ribonuclease 1 (RNase1) acts as a protective factor of vascular homeostasis and is known to be repressed by massive and persistent inflammation, associated to the development of vascular pathologies. Bacterial extracellular vesicles (bEVs) are released upon infection and may interact with ECs to mediate EC barrier dysfunction.
View Article and Find Full Text PDFGram-negative bacteria naturally secrete nano-sized outer membrane vesicles (OMVs), which are important mediators of communication and pathogenesis. OMV uptake by host cells activates TLR signalling via transported PAMPs. As important resident immune cells, alveolar macrophages are located at the air-tissue interface where they comprise the first line of defence against inhaled microorganisms and particles.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2022
The spatiotemporal regulation of cell division is a fundamental issue in cell biology. Bacteria have evolved a variety of different systems to achieve proper division site placement. In many cases, the underlying molecular mechanisms are still incompletely understood.
View Article and Find Full Text PDFRecA plays a central role in DNA repair and is a main actor involved in homologous recombination (HR). , RecA forms filamentous structures termed "threads," which are essential for HR, but whose nature is still ill defined. We show that RecA from Bacillus subtilis having lower ATP binding activity can still form nucleoprotein filaments , features lower dsDNA binding activity, but still retains most of wild type RecA activity .
View Article and Find Full Text PDFThe evolution of ribulose-1,5-bisphosphate carboxylase/oxygenases (Rubiscos) that discriminate strongly between their substrate carbon dioxide and the undesired side substrate dioxygen was an important event for photosynthetic organisms adapting to an oxygenated environment. We use ancestral sequence reconstruction to recapitulate this event. We show that Rubisco increased its specificity and carboxylation efficiency through the gain of an accessory subunit before atmospheric oxygen was present.
View Article and Find Full Text PDFPeroxisomes participate in several important metabolic processes in eukaryotic cells, such as the detoxification of reactive oxygen species (ROS) or the degradation of fatty acids by β-oxidation. Recently, the presence of peroxisomes in the cryptophyte and other "chromalveolates" was revealed by identifying proteins for peroxisomal biogenesis. Here, we investigated the subcellular localization of candidate proteins of in the diatom , either possessing a putative peroxisomal targeting signal type 1 (PTS1) sequence or factors lacking a peroxisomal targeting signal but known to be involved in β-oxidation.
View Article and Find Full Text PDFFlavins are ubiquitous molecules in life as they serve as important enzyme cofactors. In the Gram-positive, soil-dwelling bacterium , four well-characterized gene products (the enzymes RibDG, RibE, RibAB, and RibH) catalyze the biosynthesis of riboflavin (RF) from guanosine-triphosphate (GTP) and ribulose-5-phosphate (R5P). The corresponding genes form an operon together with the gene (), wherein the function of this terminal gene remained enigmatic.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2021
The prokaryotic cell is traditionally seen as a "bag of enzymes," yet its organization is much more complex than in this simplified view. By now, various microcompartments encapsulating metabolic enzymes or pathways are known for These microcompartments are usually small, encapsulating and concentrating only a few enzymes, thus protecting the cell from toxic intermediates or preventing unwanted side reactions. The hyperthermophilic, strictly anaerobic Crenarchaeon is an extraordinary organism possessing two membranes, an inner and an energized outer membrane.
View Article and Find Full Text PDFBackground: MreB is a bacterial ortholog of actin and forms mobile filaments underneath the cell membrane, perpendicular to the long axis of the cell, which play a crucial role for cell shape maintenance. We wished to visualize Bacillus subtilis MreB in vitro and therefore established a protocol to obtain monomeric protein, which could be polymerized on a planar membrane system, or associated with large membrane vesicles.
Results: Using a planar membrane system and electron microscopy, we show that Bacillus subtilis MreB forms bundles of filaments, which can branch and fuse, with an average width of 70 nm.
Unicellular organisms that live in marine environments must cope with considerable fluctuations in the availability of inorganic phosphate (P). Here, we investigated the extracellular P concentration-dependent expression, as well as the intracellular or extracellular localization, of phosphatases and phosphate transporters of the diatom . We identified P-regulated plasma membrane-localized, ER-localized, and secreted phosphatases, in addition to plasma membrane-localized, vacuolar membrane-localized, and plastid-surrounding membrane-localized phosphate transporters that were also regulated in a P concentration-dependent manner.
View Article and Find Full Text PDFDefects in flagella/cilia are often associated with infertility and disease. Motile male gametes (sperm cells) are an ancestral eukaryotic trait that has been lost in several lineages like flowering plants. Here, we made use of a phenotypic male fertility difference between two moss (Physcomitrella patens) ecotypes to explore spermatozoid function.
View Article and Find Full Text PDFFor nearly 50 years immunogold labeling on ultrathin sections has been successfully used for protein localization in laboratories worldwide. In theory and in practice, this method has undergone continual improvement over time. In this study, we carefully analyzed circulating protocols for postembedding labeling to find out if they are still valid under modern laboratory conditions, and in addition, we tested unconventional protocols.
View Article and Find Full Text PDFThe human pathogen Helicobacter pylori is known for its colonization of the upper digestive system, where it escapes the harsh acidic environment by hiding in the mucus layer. One factor promoting this colonization is the helical cell shape of H. pylori.
View Article and Find Full Text PDFNucleomorphs are small nuclei that evolved from the nucleus of former eukaryotic endosymbionts of cryptophytes and chlorarachniophytes. These enigmatic organelles reside in their complex plastids and harbor the smallest and most compacted eukaryotic genomes investigated so far. Although the coding capacity of the nucleomorph genomes is small, a significant percentage of the encoded proteins (predicted nucleomorph-encoded proteins, pNMPs) is still not functionally annotated.
View Article and Find Full Text PDFIn the version of this Article originally published, author Carolina Falcón Garcia's name was coded wrongly, resulting in it being incorrect when exported to citation databases. This has now been corrected, though no visible changes will be apparent.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.