Vibrio diabolicus 3098 is a marine halophile, a member of the . The draft whole-genome sequence is 5.17 Mb and has 4,829 predicted coding sequences divided into two chromosomes and a plasmid.
View Article and Find Full Text PDFPancreatic β-cells in the islets of Langerhans are key to maintaining glucose homeostasis by secreting the peptide hormone insulin. Insulin is packaged within vesicles named insulin secretory granules (ISGs), which recently have been considered to have intrinsic structures and proteins that regulate insulin granule maturation, trafficking, and secretion. Previously, studies have identified a handful of novel ISG-associated proteins, using different separation techniques.
View Article and Find Full Text PDFCell Metab
August 2024
A mechanistic connection between aging and development is largely unexplored. Through profiling age-related chromatin and transcriptional changes across 22 murine cell types, analyzed alongside previous mouse and human organismal maturation datasets, we uncovered a transcription factor binding site (TFBS) signature common to both processes. Early-life candidate cis-regulatory elements (cCREs), progressively losing accessibility during maturation and aging, are enriched for cell-type identity TFBSs.
View Article and Find Full Text PDFAims/hypothesis: Almost all beta cells contact one capillary and insulin granule fusion is targeted to this region. However, there are reports of beta cells contacting more than one capillary. We therefore set out to determine the proportion of beta cells with multiple contacts and the impact of this on cell structure and function.
View Article and Find Full Text PDFChronic destruction of insulin-producing pancreatic β cells by T cells results in autoimmune diabetes. Similar to other chronic T cell-mediated pathologies, a role for T cell exhaustion has been identified in diabetes in humans and NOD mice. The development and differentiation of exhausted T cells depends on exposure to Ag.
View Article and Find Full Text PDFIntroduction: Chronic activation of self-reactive T cells with beta cell antigens results in the upregulation of immune checkpoint molecules that keep self-reactive T cells under control and delay beta cell destruction in autoimmune diabetes. Inhibiting PD1/PD-L1 signaling results in autoimmune diabetes in mice and humans with pre-existing autoimmunity against beta cells. However, it is not known if other immune checkpoint molecules, such as TIGIT, can also negatively regulate self-reactive T cells.
View Article and Find Full Text PDFObjective: This multicenter prospective cohort study compared pancreas volume as assessed by MRI, metabolic scores derived from oral glucose tolerance testing (OGTT), and a combination of pancreas volume and metabolic scores for predicting progression to stage 3 type 1 diabetes (T1D) in individuals with multiple diabetes-related autoantibodies.
Research Design And Methods: Pancreas MRI was performed in 65 multiple autoantibody-positive participants enrolled in the Type 1 Diabetes TrialNet Pathway to Prevention study. Prediction of progression to stage 3 T1D was assessed using pancreas volume index (PVI), OGTT-derived Index60 score and Diabetes Prevention Trial-Type 1 Risk Score (DPTRS), and a combination of PVI and DPTRS.
Tau protein is implicated in the pathogenesis of Alzheimer's disease (AD) and other tauopathies, but its physiological function is in debate. Mostly explored in the brain, tau is also expressed in the pancreas. We further explored the mechanism of tau's involvement in the regulation of glucose-stimulated insulin secretion (GSIS) in islet β-cells, and established a potential relationship between type 2 diabetes mellitus (T2DM) and AD.
View Article and Find Full Text PDFCXCL10 is an IFNγ-inducible chemokine implicated in the pathogenesis of type 1 diabetes. T-cells attracted to pancreatic islets produce IFNγ, but it is unclear what attracts the first IFNγ -producing T-cells in islets. Gut dysbiosis following administration of pathobionts induced CXCL10 expression in pancreatic islets of healthy non-diabetes-prone (C57BL/6) mice and depended on TLR4-signaling, and in non-obese diabetic (NOD) mice, gut dysbiosis induced also CXCR3 chemokine receptor in IGRP-reactive islet-specific T-cells in pancreatic lymph node.
View Article and Find Full Text PDFType 1 diabetes is an autoimmune disease with onset from early childhood. The insulin-producing pancreatic beta cells are destroyed by CD8 cytotoxic T cells. The disease is challenging to study mechanistically in humans because it is not possible to biopsy the pancreatic islets and the disease is most active prior to the time of clinical diagnosis.
View Article and Find Full Text PDFType 1 diabetes is a complex disease characterized by the lack of endogenous insulin secreted from the pancreatic β-cells. Although β-cell targeted autoimmune processes and β-cell dysfunction are known to occur in type 1 diabetes, a complete understanding of the cell-to-cell interactions that support pancreatic function is still lacking. To characterize the pancreatic endocrine compartment, we studied pancreata from healthy adult donors and investigated a single cell surface adhesion molecule, desmoglein-2 (DSG2).
View Article and Find Full Text PDFBackground: Type 1 diabetes (T1D) places an extraordinary burden on individuals and their families, as well as on the healthcare system. Despite recent advances in glucose sensors and insulin pump technology, only a minority of patients meet their glucose targets and face the risk of both acute and long-term complications, some of which are life-threatening. The JAK-STAT pathway is critical for the immune-mediated pancreatic beta cell destruction in T1D.
View Article and Find Full Text PDFInterferon gamma (IFNγ) is a proinflammatory cytokine implicated in autoimmune diseases. However, deficiency or neutralization of IFNγ is ineffective in reducing disease. We characterize islet antigen-specific T cells in non-obese diabetic (NOD) mice lacking all three IFN receptor genes.
View Article and Find Full Text PDFWe present a case of an obese 22-year-old man with activating variant who had neonatal hypoglycemia, re-emerging with hypoglycemia later in life. We investigated him for asymptomatic hypoglycemia with a family history of hypoglycemia. Genetic testing yielded a novel missense class 3 variant that was subsequently found in his mother, sister and nephew and reclassified as a class 4 likely pathogenic variant.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
April 2022
Background & Aims: Pancreatic islet β-cells are factories for insulin production; however, ectopic expression of insulin also is well recognized. The gallbladder is a next-door neighbor to the developing pancreas. Here, we wanted to understand if gallbladders contain functional insulin-producing cells.
View Article and Find Full Text PDFObjectives: Loss of functional β-cell mass is a key factor contributing to poor glycemic control in advanced type 2 diabetes (T2D). We have previously reported that the inhibition of the neuropeptide Y1 receptor improves the islet transplantation outcome in type 1 diabetes (T1D). The aim of this study was to identify the pathophysiological role of the neuropeptide Y (NPY) system in human T2D and further evaluate the therapeutic potential of using the Y1 receptor antagonist BIBO3304 to improve β-cell function and survival in T2D.
View Article and Find Full Text PDFMagnetic resonance imaging (MRI) has detected changes in pancreas volume and other characteristics in type 1 and type 2 diabetes. However, differences in MRI technology and approaches across locations currently limit the incorporation of pancreas imaging into multisite trials. The purpose of this study was to develop a standardized MRI protocol for pancreas imaging and to define the reproducibility of these measurements.
View Article and Find Full Text PDFPancreatic β cells secrete the hormone insulin into the bloodstream and are critical in the control of blood glucose concentrations. β cells are clustered in the micro-organs of the islets of Langerhans, which have a rich capillary network. Recent work has highlighted the intimate spatial connections between β cells and these capillaries, which lead to the targeting of insulin secretion to the region where the β cells contact the capillary basement membrane.
View Article and Find Full Text PDF