A combined surface science/microreactor approach was applied to examine interface effects in ethylene hydrogenation on carbon-supported Ag, Au, and Cu nanoparticle catalysts. Turnover frequencies (TOFs) were substantially higher for supported catalysts than for (unsupported) polycrystalline metal foils, especially for Ag. Spark ablation of the corresponding metals on highly oriented pyrolytic graphite (HOPG) and carbon-coated grids yielded nanoparticles of around 3 nm size that were well-suited for characterization by X-ray photoelectron spectroscopy (XPS), high-resolution (scanning) transmission electron microscopy (HRTEM/STEM), and energy dispersive X-ray spectroscopy (EDX).
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
April 2022
CO adsorption and dissociation on "perfect" and "defect-rich" Ir(111) surfaces were studied by a combination of surface-analytical techniques, including polarization-dependent (PPP and SSP) sum frequency generation (SFG) vibrational spectroscopy, low-energy electron diffraction (LEED), Auger electron spectroscopy, X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations. CO was found to be ordered and tilted from the surface normal at high coverage on the "perfect" surface (e.g.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) are commended as photocatalysts for H evolution and CO reduction as they combine light-harvesting and catalytic functions with excellent reactant adsorption capabilities. For dynamic processes in liquid phase, the accessibility of active sites becomes a critical parameter as reactant diffusion is limited by the inherently small micropores. Our strategy is to introduce additional mesopores by selectively removing one ligand in mixed-ligand MOFs via thermolysis.
View Article and Find Full Text PDFAtmospheric pressure reactions on model catalysts are typically performed in so-called high-pressure cells, with product analysis performed by gas chromatography (GC) or mass spectrometry (MS). However, in most cases, these cells have a large volume (liters) so that the reactions on catalysts with only cm surface area can be carried out only in the (recirculated) batch mode to accumulate sufficient product amounts. Herein, we describe a novel small-volume (milliliters) catalytic reactor that enables kinetic studies under atmospheric pressure flow conditions.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
October 2020
Doping gold nanoclusters with palladium has been reported to increase their catalytic activity and stability. PdAu nanoclusters, with the Pd dopant atom located at the center of the Au cluster core, were supported on titania and applied in catalytic CO oxidation, showing significantly higher activity than supported monometallic Au nanoclusters. After pretreatment, DRIFTS spectroscopy detected CO adsorbed on Pd during CO oxidation, indicating migration of the Pd dopant atom from the Au cluster core to the cluster surface.
View Article and Find Full Text PDFAtomically precise thiolate protected Au nanoclusters Au(SCHPh) on CeO were used for in-situ (operando) extended X-ray absorption fine structure/diffuse reflectance infrared fourier transform spectroscopy and ex situ scanning transmission electron microscopy-high-angle annular dark-field imaging/X-ray photoelectron spectroscopy studies monitoring cluster structure changes induced by activation (ligand removal) and CO oxidation. Oxidative pretreatment at 150 °C "collapsed" the clusters' ligand shell, oxidizing the hydrocarbon backbone, but the S remaining on Au acted as poison. Oxidation at 250 °C produced bare Au surfaces by removing S which migrated to the support (forming Au-S), leading to highest activity.
View Article and Find Full Text PDF