Genetic immunization is an attractive approach for prophylactic and therapeutic vaccination using synthetic vectors to deliver antigen-encoding nucleic acids. Recently, DNA delivered by a physical means or RNA by liposomes consisting of four different lipids demonstrated good protection in human phase III clinical trials and received Drugs Controller General of India and US FDA approval to protect against COVID-19, respectively. However, the development of a system allowing for efficient and simple delivery of nucleic acids while improving immune response priming has the potential to unleash the full therapeutic potential of genetic immunization.
View Article and Find Full Text PDFObjective: The appropriate use of facemasks, recommended or mandated by authorities, is critical to prevent the spread of COVID-19 in the community. We aim to evaluate frequency and quality of facemask use in general populations.
Methods: A multi-site observational study was carried out from June to July 2020 in the west of France.
It is reported that low concentration of amphiphilic triblock copolymers of pMeOx-b-pTHF-b-pMeOx structure (TBCPs) improves gene expression in skeletal muscle upon intramuscular co-injection with plasmid DNA. Physicochemical studies carried out to understand the involved mechanism show that a phase transition of TBCPs under their unimer state is induced when the temperature is elevated from 25 to 37 °C, the body temperature. Several lines of evidences suggest that TBCP insertion in a lipid bilayer causes enough lipid bilayer destabilization and even pore formation, a phenomenon heightened during the phase transition of TBCPs.
View Article and Find Full Text PDFDevelopment of simple and fully characterized immunomodulatory molecules is an active area of research to enhance current immunotherapies. Monophosphoryl lipid A (MPL), a nontoxic lipidic derivative from bacteria, is the first and currently only adjuvant approved in humans. However, its capacity to induce a potent response against weak immunogenic tumoral-associated antigens remains limited.
View Article and Find Full Text PDFBackground: Inappropriate staff behaviour during surgical procedures may disrupt the surgical performance and compromise patient safety. We developed an innovative monitoring and feedback system combined with an adaptive approach to optimise staff behaviour intraoperatively and prevent post-operative complications (POC) in orthopaedic surgery.
Methods/design: This protocol describes a parallel-group, cluster randomised, controlled trial with orthopaedic centre as the unit of randomisation.
Protein expression and RNA interference require efficient delivery of DNA or mRNA and small double stranded RNA into cells, respectively. Although cationic lipids are the most commonly used synthetic delivery vectors, a clear need still exists for a better delivery of various types of nucleic acids molecules to improve their biological activity. To optimize the transfection efficiency, a molecular approach consisting in modifying the chemical structure of a given cationic lipid is usually performed, but an alternative strategy could rely on modulating the supramolecular assembly of lipidic lamellar phases sandwiching the nucleic acids molecules.
View Article and Find Full Text PDFThe intracellular delivery of nucleic acid molecules is a complex process involving several distinct steps; among these the endosomal escape appeared to be of particular importance for an efficient protein production (or inhibition) into host cells. In the present study, a new series of ionizable vectors, derived from naturally occurring aminoglycoside tobramycin, was prepared using improved synthetic procedures that allow structural variations on the linker and hydrophobic domain levels. Complexes formed between the new ionizable lipids and mRNA, DNA, or siRNA were characterized by cryo-TEM experiments and their transfection potency was evaluated using different cell types.
View Article and Find Full Text PDFBackground: To optimize synthetic gene delivery systems, there is a need to develop more efficient lipid formulations. Most cationic lipid formulations contain 'helper' neutral lipids because of their ability to increase DNA delivery, in particular by improving endosomal escape of DNA molecules via the pH-buffering effect of protonatable groups and/or fusion with the lipid bilayer of endosomes.
Methods: We evaluated the influence of the linker structure between the two oleyl chains in the helper lipid on transfection efficiency in cell lines, as well as in primary cells (hepatocytes/cardiomyocytes).
The intracellular delivery of biologically active protein represents an important emerging strategy for both fundamental and therapeutic applications. Here, we optimized in vitro delivery of two functional proteins, the β-galactosidase (β-gal) enzyme and the anti-cytokeratin8 (K8) antibody, using liposome-based formulation. The guanidinium-cholesterol cationic lipid bis (guanidinium)-tren-cholesterol (BGTC) (bis (guanidinium)-tren-cholesterol) combined to the colipid dioleoyl phosphatidylethanolamine (DOPE) (dioleoyl phosphatidylethanolamine) was shown to efficiently deliver the β-gal intracellularly without compromising its activity.
View Article and Find Full Text PDFIn the present study, we evaluated, in mice, the efficacy of the tetrafunctional block copolymer 704 as a nonviral gene delivery vector to the lungs. SPECT/CT molecular imaging of gene expression, biochemical assays, and immunohistochemistry were used. Our dataset shows that the formulation 704 resulted in higher levels of reporter gene expression than the GL67A formulation currently being used in a clinical trial in cystic fibrosis patients.
View Article and Find Full Text PDFFoetal pig neuroblasts are interesting candidates as a cell source for transplantation, but xenotransplantation in the brain requires the development of adapted immunosuppressive treatments. As systemic administration of high doses of cyclosporine A has side effects and does not protect xenotransplants forever, we focused our work on local control of the host immune responses. We studied the advantage of cotransplanting syngenic mesenchymal stem cells (MSC) with porcine neuroblasts (pNb) in immunocompetent rat striata.
View Article and Find Full Text PDFT-cell depletion strategies are an efficient therapy for the treatment of acute rejection after organ transplantation and have been successfully used as induction regimens. Although eliminating whole T cells blocks alloreactivity, this therapy challenges the development of regulatory mechanisms because it depletes regulatory cells and modifies the profile of T cells after homeostatic repopulation. Targeting T-cell subpopulations or selectively activated T cells, without modifying Treg cells, could constitute a pro-tolerogenic approach.
View Article and Find Full Text PDFThe immune tolerance to rat kidney allografts induced by a perioperative treatment with anti-CD28 Abs is associated with a severe unresponsiveness of peripheral blood cells to donor Ags. In this model, we identified an accumulation in the blood of CD3(-)class II(-)CD11b(+)CD80/86(+) plastic-adherent cells that additionally expressed CD172a as well as other myeloid markers. These cells were able to inhibit proliferation, but not activation, of effector T cells and to induce apoptosis in a contact-dependent manner.
View Article and Find Full Text PDFBackground: Lymphocyte-activated gene-3 (LAG-3, CD223) is upregulated during the early stages of T-cell activation and could be the target of cytotoxic antibodies for induction therapy in transplantation.
Methods: Fully vascularized heterotopic allogeneic heart transplantation was performed in rats across a full major histocompatibility complex-mismatch barrier (LEW.1W into LEW.