Functional cross-talk among human drug-metabolizing cytochrome P450 through their association is a topic of emerging importance. Here, we studied the interactions of human CYP2D6, a major metabolizer of psychoactive drugs, with one of the most prevalent human P450 enzymes, ethanol-inducible CYP2E1. Detection of P450-P450 interactions was accomplished through luminescence resonance energy transfer between labeled proteins incorporated into human liver microsomes and the microsomes of insect cells containing NADPH-cytochrome P450 reductase.
View Article and Find Full Text PDFThe thiazolidinedione (TZD) ring is a constituent of the glitazones that are used to treat type II diabetes. Liver injury has been reported following chronic glitazone use; however, they do not produce hepatic damage in common laboratory animal species. In contrast, 3-(3,5-dichlorophenyl)-2,4-thiazolidinedione (DCPT) causes hepatotoxicity in rats.
View Article and Find Full Text PDFLiver cytochrome P450s (P450s) play critical roles in drug metabolism, toxicology, and metabolic processes. Despite rapid progress in the understanding of these enzymes, a systematic investigation of the full spectrum of functionality of individual P450s, the interrelationship or networks connecting them, and the genetic control of each gene/enzyme is lacking. To this end, we genotyped, expression-profiled, and measured P450 activities of 466 human liver samples and applied a systems biology approach via the integration of genetics, gene expression, and enzyme activity measurements.
View Article and Find Full Text PDFGenetic variants that are associated with common human diseases do not lead directly to disease, but instead act on intermediate, molecular phenotypes that in turn induce changes in higher-order disease traits. Therefore, identifying the molecular phenotypes that vary in response to changes in DNA and that also associate with changes in disease traits has the potential to provide the functional information required to not only identify and validate the susceptibility genes that are directly affected by changes in DNA, but also to understand the molecular networks in which such genes operate and how changes in these networks lead to changes in disease traits. Toward that end, we profiled more than 39,000 transcripts and we genotyped 782,476 unique single nucleotide polymorphisms (SNPs) in more than 400 human liver samples to characterize the genetic architecture of gene expression in the human liver, a metabolically active tissue that is important in a number of common human diseases, including obesity, diabetes, and atherosclerosis.
View Article and Find Full Text PDFTo prevent chemotherapy-induced nausea and vomiting, aprepitant is given with a corticosteroid and a 5-hydroxytryptamine type 3 antagonist, such as dolasetron. Dolasetron is converted to the active metabolite hydrodolasetron, which is cleared largely via CYP2D6. The authors determined whether aprepitant, a moderate CYP3A4 inhibitor, alters hydrodolasetron pharmacokinetics in CYP2D6 poor and extensive metabolizers.
View Article and Find Full Text PDFIntroduction: P-glycoprotein is localized in numerous tissues throughout the body and plays an important role in the disposition of many xenobiotics. The contribution of P-glycoprotein-mediated drug transport is being evaluated in early drug discovery stages, particularly for compounds targeted to the central nervous system, using in vitro tools including cell lines expressing P-glycoprotein. Previous work in our laboratory suggests there are species differences in P-glycoprotein transport activity between humans and animals.
View Article and Find Full Text PDFCompound I [3-[5-(4-methanesulfonyl-piperazin-1-ylmethyl)-1H-indol-2-yl]-1H-quinolin-2-one] is a potent inhibitor of human kinase insert domain-containing receptor (KDR kinase), which is under investigation for the treatment of cancer. Bile duct-cannulated male beagle dogs were administered 6 mg/kg compound I q.d.
View Article and Find Full Text PDFIn the present study, N-(alpha-methylbenzyl-)-1-aminobenzotriazole (MBA) and ketoconazole (KET) were identified as the inhibitors with selectivity toward dog CYP2B11 and CYP3A12, respectively. Their selectivity was evaluated using phenacetin O-deethylation (CYP1A), diazepam (DZ) N1-demethylation (CYP2B11), diclofenac 4'-hydrxylation (CYP2C21), bufuralol 1'-hydroxylation (CYP2D11), and DZ C3-hydroxylation (CYP3A12) activities in dog liver microsomes (DLM). MBA exhibited potent mechanism-based inhibition of DZ N1-demethylase activity catalyzed by both baculovirus-expressed CYP2B11 and DLM.
View Article and Find Full Text PDFSulfation of ethinyl estradiol (EE) is a major pathway of first pass metabolism in both the intestine and liver. Consequently, we sought to identify the human sulfotransferases (SULTs) involved in the 3-O-sulfation of EE (EE-SULT). Based on the results described herein, cDNA-expressed human cytosolic SULT1A3 and SULT1E1 were identified as low Km isoforms (18.
View Article and Find Full Text PDFStimulation by quinidine of warfarin metabolism in vitro was first demonstrated with liver microsomal preparations. We report herein that this drug interaction is reproducible in an animal model but that it exhibits profound species differences. Thus, using rabbit liver microsomes and a kinetic model incorporating two binding sites, the hepatic intrinsic clearance of R-warfarin via the 10-hydroxylation pathway (CL(int)(W)) was projected to be 6 +/- 1 and 128 +/- 51 microl/min/g liver, respectively, in the absence and presence of 21 microM unbound quinidine.
View Article and Find Full Text PDFLigand-mediated activation of the pregnane X receptor (PXR, NR1I2) is postulated to affect both hepatic and intestinal gene expression, because of the presence of this nuclear receptor in these important drug metabolizing organs; as such, activation of this receptor may elicit the coordinated regulation of PXR target genes in both tissues. Induction of hepatic and intestinal drug metabolism can contribute to the increased metabolism of drugs, and can result in adverse or undesirable drug-drug interactions. 2(S)-((3,5-bis(Trifluoromethyl)benzyl)-oxy)-3(S)phenyl-4-((3-oxo-1,2,4-triazol-5-yl)methyl)morpholine (L-742694) is a potent activator of the rat PXR and was characterized for its effects on hepatic and intestinal gene expression in female Sprague-Dawley rats by DNA microarray analysis.
View Article and Find Full Text PDFThe purpose of this study was to quantify the oxidative metabolism of dehydroepiandrosterone (3beta-hydroxy-androst-5-ene-17-one; DHEA) by liver microsomal fractions from various species and identify the cytochrome P450 (P450) enzymes responsible for production of individual hydroxylated DHEA metabolites. A gas chromatography-mass spectrometry method was developed for identification and quantification of DHEA metabolites. 7alpha-Hydroxy-DHEA was the major oxidative metabolite formed by rat (4.
View Article and Find Full Text PDFSeven dog cytochromes p450 (p450s) were heterologously expressed in baculovirus-Sf21 insect cells. Of all enzymes examined, CYP1A1 exhibited high 7-ethoxyresorufin O-deethylase activity (low Km enzyme, 1 microM). CYP2B11 and CYP3A12 effectively catalyzed the N1-demethylation and C3-hydroxylation of diazepam (and its derivatives), whereas CYP3A12 and CYP2D15 catalyzed exclusively the N- and O-demethylation, respectively, of dextromethorphan.
View Article and Find Full Text PDFDrug or xenobiotics metabolizing enzymes (DMEs or XMEs) play central roles in the biotransformation, metabolism and/or detoxification of xenobiotics or foreign compounds, that are introduced to the human body. In general, DMEs protect or defend the body against the potential harmful insults from the environment. Once in the body, many xenobiotics may induce signal transduction events either specifically or non-specifically leading to various cellular, physiological and pharmacological responses including homeostasis, proliferation, differentiation, apoptosis, or necrosis.
View Article and Find Full Text PDFMembers of the human cytochrome P450 (CYP) superfamily play a role in the metabolism of many drugs and several of them, CYP2D6, CYP2C9 and CYP2C19, have been shown to be polymorphic as a result of single nucleotide polymorphisms (SNPs), gene deletions, and gene duplications. These polymorphisms can impact the pharmacokinetics (PK), metabolism, safety and efficacy of drugs, and because of the availability of automation, genotyped human tissue, recombinant CYP preparations (rCYPs) and reagents, most pharmaceutical companies have increasingly screened out compounds that are metabolized solely by polymorphic CYPs. In the absence of suitable animal models, it has been widely accepted that such in vitro data are useful because one can obtain information prior to dosing in man and select the most appropriate clinical studies with prospectively genotyped and phenotyped subjects.
View Article and Find Full Text PDFMonoclonal antibodies (MAbs) inhibitory to individual cytochromes P450 (P450s) are of tremendous utility in identification of P450s responsible for the metabolism of a given drug or drug candidate in pharmaceuticals. In the present study, two inhibitory MAbs against CYP2D6 (MAb(2D6-50,) IgG(2b) and MAb(2D6-184), IgG(2a)) were developed by hybridoma technology to exhibit their high specificity and potency. The MAbs were further employed to assess the quantitative role (47-93%) of CYP2D6 to the metabolism of bufuralol in human liver microsomes from seven donors.
View Article and Find Full Text PDF