Publications by authors named "Thomas H P Harvey"

The fossil record indicates a major turnover in marine phytoplankton across the Ediacaran-Cambrian transition, coincident with the rise of animal-rich ecosystems. However, the diversity, affinities and ecologies of Cambrian phytoplankton are poorly understood, leaving unclear the role of animal interactions and the drivers of diversification. New exceptionally preserved acritarchs (problematic organic-walled microfossils) from the late early Cambrian (around 510 Ma) reveal colonial organization characterized by rings and plates of interconnected, geometrically arranged cells.

View Article and Find Full Text PDF

The fossil record of terrestrialization documents notable shifts in the environmental and physiological tolerances of many animal and plant groups. However, for certain significant components of modern freshwater and terrestrial environments, the transition out of marine settings remains largely unconstrained. Ostracod crustaceans occupy an exceptional range of modern aquatic environments and are invaluable palaeoenvironmental indicators in the fossil record.

View Article and Find Full Text PDF

Marine ecosystems with a diverse range of animal groups became established during the early Cambrian (~541 to ~509 Ma). However, Earth's environmental parameters and palaeogeography in this interval of major macro-evolutionary change remain poorly constrained. Here, we test contrasting hypotheses of continental configuration and climate that have profound implications for interpreting Cambrian environmental proxies.

View Article and Find Full Text PDF

Here, we report the earliest fossil record to our knowledge of surface fouling by aggregates of small vermiform, encrusting and annulated tubular organisms associated with a mobile, nektonic host, the enigmatic Cambrian animal Vetulicola. Our material is from the exceptionally preserved early Cambrian (Epoch 2, Age 3), Chengjiang biota of Yunnan Province, southwest China, a circa 518 million-year old marine deposit. Our data show that symbiotic fouling relationships between species formed a component of the diversification of animal-rich ecosystems near the beginning of the Phanerozoic Eon, suggesting an early escalation of intimate ecologies as part of the Cambrian animal radiation.

View Article and Find Full Text PDF

Traditionally, the origin and evolution of modern arthropod body plans has been revealed through increasing levels of appendage specialisation exhibited by Cambrian euarthropods. Here we show significant variation in limb morphologies and patterns of limb-tagmosis among three early Cambrian arthropod species conventionally assigned to the Bradoriida. These arthropods are recovered as a monophyletic stem-euarthropod group (and sister taxon to crown-group euarthropods, i.

View Article and Find Full Text PDF

Chancelloriids are an extinct group of spiny Cambrian animals of uncertain phylogenetic position. Despite their sponge-like body plan, their spines are unlike modern sponge spicules, but share several features with the sclerites of certain Cambrian bilaterians, notably halkieriids. However, a proposed homology of these 'coelosclerites' implies complex transitions in body plan evolution.

View Article and Find Full Text PDF

The oceans of the early Cambrian (~541 to 509 million years ago) were the setting for a marked diversification of animal life. However, sea temperatures-a key component of the early Cambrian marine environment-remain unconstrained, in part because of a substantial time gap in the stable oxygen isotope (δO) record before the evolution of euconodonts. We show that previously overlooked sources of fossil biogenic phosphate have the potential to fill this gap.

View Article and Find Full Text PDF

Microscopic animals that live among and between sediment grains (meiobenthic metazoans) are key constituents of modern aquatic ecosystems, but are effectively absent from the fossil record. We describe an assemblage of microscopic fossil loriciferans (Ecdysozoa, Loricifera) from the late Cambrian Deadwood Formation of western Canada. The fossils share a characteristic head structure and minute adult body size (~300 μm) with modern loriciferans, indicating the early evolution and subsequent conservation of an obligate, permanently meiobenthic lifestyle.

View Article and Find Full Text PDF

Xandarellida is a well-defined clade of Lower Palaeozoic non-biomineralized artiopodans that is exclusively known from the early Cambrian (Stage 3) Chengjiang biota of South China. Here we describe a new member of this group, Xandarella mauretanica sp. nov.

View Article and Find Full Text PDF

Burgess Shale-type deposits are renowned for their exquisite preservation of soft-bodied organisms, representing a range of animal body plans that evolved during the Cambrian 'explosion'. However, the rarity of these fossil deposits makes it difficult to reconstruct the broader-scale distributions of their constituent organisms. By contrast, microscopic skeletal elements represent an extensive chronicle of early animal evolution--but are difficult to interpret in the absence of corresponding whole-body fossils.

View Article and Find Full Text PDF

The early history of crustaceans is obscured by strong biases in fossil preservation, but a previously overlooked taphonomic mode yields important complementary insights. Here we describe diverse crustacean appendages of Middle and Late Cambrian age from shallow-marine mudstones of the Deadwood Formation in western Canada. The fossils occur as flattened and fragmentary carbonaceous cuticles but provide a suite of phylogenetic and ecological data by virtue of their detailed preservation.

View Article and Find Full Text PDF

Early fossil sponges offer a direct window onto the evolutionary emergence of animals, but insights are limited by the paucity of characters preserved in the conventional fossil record. Here, a new preservational mode for sponge spicules is reported from the lower Cambrian Forteau Formation (Newfoundland, Canada), prompting a re-examination of proposed homologies and sponge inter-relationships. The spicules occur as wholly carbonaceous films, and are interpreted as the remains of robust organic spicule sheaths.

View Article and Find Full Text PDF

The reconstruction of ancestors is a central aim of comparative anatomy and evolutionary developmental biology, not least in attempts to understand the relationship between developmental and organismal evolution. Inferences based on living taxa can and should be tested against the fossil record, which provides an independent and direct view onto historical character combinations. Here, we consider the nature of the last common ancestor of living ecdysozoans through a detailed analysis of palaeoscolecids, an early and extinct group of introvert-bearing worms that have been proposed to be ancestral ecdysozoans.

View Article and Find Full Text PDF

Most Cambrian arthropods employed simple feeding mechanisms requiring only low degrees of appendage differentiation. In contrast, post-Cambrian crustaceans exhibit a wide diversity of feeding specializations and possess a vast ecological repertoire. Crustaceans are evident in the Cambrian fossil record, but have hitherto been known exclusively from small individuals with limited appendage differentiation.

View Article and Find Full Text PDF