Publications by authors named "Thomas H McNeill"

Axonal regeneration after injury to the CNS is hampered by myelin-derived inhibitors, such as Nogo-A. Natural products, such as green tea, which are neuroprotective and safe for long-term therapy, would complement ongoing various pharmacological approaches. In this study, using nerve growth factor-differentiated neuronal-like Neuroscreen-1 cells, we show that extremely low concentrations of unfractionated green tea polyphenol mixture (GTPP) and its active ingredient, epigallocatechin-3-gallate (EGCG), prevent both the neurite outgrowth-inhibiting activity and growth cone-collapsing activity of Nogo-66 (C-terminal domain of Nogo-A).

View Article and Find Full Text PDF

Delivery of optimal amounts of brain-derived neurotrophic factor (BDNF) to regions of the brain affected by neurodegenerative diseases is a daunting task. Using natural products with neuroprotective properties, such as green tea polyphenols, would be a highly useful complementary approach for inexpensive long-term treatment of these diseases. In this study, we used PC12(TrkB) cells which ectopically express TrkB, a high affinity receptor for BDNF.

View Article and Find Full Text PDF

The protein kinase C (PKC) family of isoenzymes may be a crucial player in transducing H2O2-induced signaling in a wide variety of physiological and pathophysiological processes. PKCs contain unique structural features that make them highly susceptible to oxidative modification. Depending on the site of oxidation and the extent to which it is modified, PKC can be either activated or inactivated by H2O2.

View Article and Find Full Text PDF

The sensorimotor striatum is critical for the acquisition and consolidation of skilled learning-related motor sequences. Excitatory corticostriatal synapses undergo neuroplastic changes that impact signal transmission efficacy. Modification of N-methyl d-aspartate (NMDA) and α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor subunit composition and phosphorylation is critical for bidirectional experience-driven plasticity observed at these synapses.

View Article and Find Full Text PDF

As the development of synthetic drugs for the prevention of stroke has proven challenging, utilization of natural products capable of preconditioning neuronal cells against ischemia-induced cell death would be a highly useful complementary approach. In this study using an oxygen-glucose deprivation and reoxygenation (OGD/R) model in PC12 cells, we show that 2-day pretreatment with green tea polyphenols (GTPP) and their active ingredient, epigallocatechin-3-gallate (EGCG), protects cells from subsequent OGD/R-induced cell death. A synergistic interaction was observed between GTPP constituents, with unfractionated GTPP more potently preconditioning cells than EGCG.

View Article and Find Full Text PDF

Exogenously administered nerve growth factor (NGF) repairs injured axons, but it does not cross the blood-brain barrier. Thus, agents that could potentiate the neuritogenic ability of endogenous NGF would be of great utility in treating neurological injuries. Using the PC12 cell model, we show here that unfractionated green tea polyphenols (GTPP) at low concentrations (0.

View Article and Find Full Text PDF

In this study, we have used the PC12 cell model to elucidate the mechanisms by which sublethal doses of oxidants induce neuritogenesis. The xanthine/xanthine oxidase (X/XO) system was used for the steady state generation of superoxide, and CoCl(2) was used as a representative transition metal redox catalyst. Upon treatment of purified protein kinase C (PKC) with these oxidants, there was an increase in its cofactor-independent activation.

View Article and Find Full Text PDF

Defining the selective pattern of synapse replacement that occurs in different areas of the damaged brain is essential for predicting the limits of functional compensation that can be achieved after various types of brain injury. Here we describe the time course of dendritic reorganization, spine loss and recovery, and synapse replacement in the striatum following a unilateral cortex ablation. We found that the time course for the transient loss and recovery of dendritic spines on medium spiny I (MSI) neurons, the primary postsynaptic target for corticostriatal axons, paralleled the time course for the removal of degenerating axon terminals from the neuropil and the formation of new synapses on MSI neurons.

View Article and Find Full Text PDF