Publications by authors named "Thomas H Bradley"

Turbulent mixing in pilot-scale cultivation systems influences the productivity of photoautotrophic cultures. We studied turbulent mixing by applying particle image velocimetry and acoustic doppler velocimetry to pilot-scale, flat-panel photobioreactor, and open-channel raceway. Mixing energy inputs were varied from 0.

View Article and Find Full Text PDF

The recalcitrant nature of lignocelluloses requires a pretreatment process before the fermentative butanol production. The commonly used pretreatment processes, such as steam explosion, sulfuric acid, ammonia fiber explosion, ionic liquid (IL), and biological, require different quantities and types of process chemicals, and produce different quality and quantity of fermentable sugars. This study determines life-cycle greenhouse gas emissions (GHG) these pretreatment methods by developing a system-level process model including corn stover feedstock supply system and the downstream butanol production process.

View Article and Find Full Text PDF

The process of hydraulic fracturing for recovery of oil and natural gas uses large amounts of fresh water and produces a comparable amount of wastewater, much of which is typically transported by truck. Truck transport of water is an expensive and energy-intensive process with significant external costs including roads damages, and pollution. The integrated development plan (IDP) is the industry nomenclature for an integrated oil and gas infrastructure system incorporating pipeline-based transport of water and wastewater, centralized water treatment, and high rates of wastewater recycling.

View Article and Find Full Text PDF

The microalgae biofuels life cycle assessments (LCA) present in the literature have excluded the effects of direct land use change (DLUC) from facility construction under the assumption that DLUC effects are negligible. This study seeks to model the greenhouse gas (GHG) emissions of microalgae biofuels including DLUC by quantifying the CO equivalence of carbon released to the atmosphere through the construction of microalgae facilities. The locations and types of biomass and Soil Organic Carbon that are disturbed through microalgae cultivation facility construction are quantified using geographical models of microalgae productivity potential including consideration of land availability.

View Article and Find Full Text PDF

This study focuses on the characterization of the technical and economic feasibility of an enclosed photobioreactor microalgae system with annual production of 37.85 million liters (10 million gallons) of biofuel. The analysis characterizes and breaks down the capital investment and operating costs and the production cost of unit of algal diesel.

View Article and Find Full Text PDF

This study presents experimental measurements of the biochemical methane production for whole and lipid extracted Nannochloropsis salina. Results show whole microalgae produced 430 cm(3)-CH4 g-volatile solids(-1) (g-VS) (σ=60), 3 times more methane than was produced by the LEA, 140 cm(3)-CH4 g-VS(-1) (σ=30). Results illustrate current anaerobic modeling efforts in microalgae to biofuel assessments are not reflecting the impact of lipid removal.

View Article and Find Full Text PDF

Commercial production of renewable energy feedstocks from microalgae will require reliable and scalable growth systems. Two and one half years of biomass and lipid productivity data were obtained with an industrial-scale outdoor photobioreactor operated in Fort Collins, Colorado (USA). The annualized volumetric growth rates for Nannochloropsis oculata (CCMP 525) and Nannochloropsis salina (CCMP 1776) were 0.

View Article and Find Full Text PDF

Although numerous lifecycle assessments (LCA) of microalgae-based biofuels have suggested net reductions of greenhouse gas emissions, limited experimental data exist on direct emissions from microalgae cultivation systems. For example, nitrous oxide (N(2)O) is a potent greenhouse gas that has been detected from microalgae cultivation. However, little quantitative experimental data exist on direct N(2)O emissions from microalgae cultivation, which has inhibited LCA performed to date.

View Article and Find Full Text PDF

This study investigates the scaling of photobioreactor productivity based on the growth of Nannochloropsis salina incorporating the effects of direct and diffuse light. The scaling and optimization of photobioreactor geometry was analyzed by determining the growth response of a small-scale system designed to represent a core sample of a large-scale photobioreactor. The small-scale test apparatus was operated at a variety of light intensities on a batch time scale to generate a photosynthetic irradiance (PI) growth dataset, ultimately used to inform a PI growth model.

View Article and Find Full Text PDF