The mean-field treatment of the Bose-Hubbard model predicts properties of lattice-trapped gases to be insensitive to the specific lattice geometry once system energies are scaled by the lattice coordination number z. We test this scaling directly by comparing coherence properties of ^{87}Rb gases that are driven across the superfluid to Mott insulator transition within optical lattices of either the kagome (z=4) or the triangular (z=6) geometries. The coherent fraction measured for atoms in the kagome lattice is lower than for those in a triangular lattice with the same interaction and tunneling energies.
View Article and Find Full Text PDF