Publications by authors named "Thomas Grebe"

Objective: Celecoxib carries a smaller cardiovascular risk for myocardial infarction and hypertension than other cyclooxygenase-2 (COX-2)-selective non-steroidal anti-inflammatory drugs NSAIDs ("coxibs") and may ameliorate endothelial dysfunction. We aimed to determine which mechanism possibly accounts for the beneficial effect by investigating its vascular action in different in vitro preparations in comparison with other coxibs and reference phosphodiesterase-5 (PDE5) inhibitors.

Methods: To uncover potential effects on coronary flow, the effects of celecoxib in comparison with other NSAIDs and the PDE5 inhibitors, sildenafil and zaprinast, were investigated in guinea-pig Langendorff heart.

View Article and Find Full Text PDF

The cysteinyl leukotrienes (CysLTs) LTC(4), LTD(4) and LTE(4) are potent proinflammatory lipid mediators that play a central role in inflammation, contraction and remodelling of airways observed in asthmatics. Montelukast, a competitive inhibitor of the cysteinyl leukotriene-1 (CysLT(1)) receptor attenuates asthmatic airway inflammation, contraction and remodelling. As a number of studies have shown that montelukast reduced exhaled nitric oxide (NO) levels, a marker of inflammation that correlates with the severity of asthma, we investigated whether or not a direct inhibition of NO synthase (NOS) by montelukast takes place.

View Article and Find Full Text PDF

The present study examines the functional and binding affinities of the aporphine alkaloid, (+)-boldine, at different alpha(1)- and alpha(2)-adrenoceptor subtypes, namely, alpha(1A) (rat vas deferens and kidney) and its L-like state (rabbit spleen), alpha(1B) (guinea pig spleen, mouse spleen and rabbit aorta), alpha(1D) (rat aorta and pulmonary artery), at possible subtypes of prejunctional alpha(2)-adrenoceptors in rat and rabbit vas deferens and rat atrium, alpha(2D) in guinea pig ileum, cloned human alpha(1)-adrenoceptor subtypes A, B and D and alpha(2)-adrenoceptor subtypes A, B and C as well as rat alpha(2D)-adrenoceptors. Additionally, we investigated its Ca(2+) channel antagonism in vascular and cardiac preparations. (+)-Boldine had higher affinity at alpha(1)-adrenoceptor subtype A (pA(2)=7.

View Article and Find Full Text PDF