SR/RS dipeptide repeats vary in both length and position, and are phosphorylated by SR protein kinases (SRPKs). PIM-1L, the long isoform of PIM-1 kinase, the splicing of which has been implicated in acute myeloid leukemia, contains a domain that consists largely of repeating SR/RS and SH/HS dipeptides (SR/SH-rich). In order to extend our knowledge on the specificity and cellular functions of SRPK1, here we investigate whether PIM-1L could act as substrate of SRPK1 by a combination of biochemical and computational approaches.
View Article and Find Full Text PDFPeptide-drug conjugates are delivery systems for selective delivery of cytotoxic agents to target cancer cells. In this work, the optimized synthesis of JH-VII-139-1 and its c(RGDyK) peptide conjugates is presented. The low nanomolar SRPK1 inhibitor, JH-VII-139-1, which is an analogue of Alectinib, was linked to the αβ targeting oligopeptide c(RGDyK) through amide, carbamate and urea linkers.
View Article and Find Full Text PDFAlthough SRPKs were discovered nearly 30 years ago, our understanding of their mode of regulation is still limited. Regarded as constitutively active enzymes known to participate in diverse biological processes, their prominent mode of regulation mainly depends on their intracellular localization. Molecular chaperones associate with a large internal spacer sequence that separates the bipartite kinase catalytic core and modulates the kinases' partitioning between the cytoplasm and nucleus.
View Article and Find Full Text PDFSR Protein Kinases (SRPKs), discovered approximately 30 years ago, are widely known as splice factor kinases due to their decisive involvement in the regulation of various steps of mRNA splicing. However, they were also shown to regulate diverse cellular activities by phosphorylation of serine residues residing in serine-arginine/arginine-serine dipeptide motifs. Over the last decade, SRPK1 has been reported as both tumor suppressor and promoter, depending on the cellular context and has been implicated in both chemotherapy sensitivity and resistance.
View Article and Find Full Text PDFMutations in the gene encoding Lamin B receptor (LBR), a nuclear-membrane protein with sterol reductase activity, have been linked to rare human disorders. Phenotypes range from a benign blood disorder, such as Pelger-Huet anomaly (PHA), affecting the morphology and chromatin organization of white blood cells, to embryonic lethality as for Greenberg dysplasia (GRBGD). Existing PHA mouse models do not fully recapitulate the human phenotypes, hindering efforts to understand the molecular etiology of this disorder.
View Article and Find Full Text PDFSerine/arginine protein kinases (SRPKs) phosphorylate Arg/Ser dipeptide-containing proteins that play crucial roles in a broad spectrum of basic cellular processes. The existence of a large internal spacer sequence that separates the bipartite kinase catalytic core and anchors the kinases in the cytoplasm is a unique structural feature of SRPKs. Here, we report that exposure of HeLa and T24 cells to DNA damage inducers triggers the nuclear translocation of SRPK1 and SRPK2.
View Article and Find Full Text PDFSR/RS domains are found in almost all eukaryotic genomes from to human. These domains are thought to mediate interactions between proteins but also between proteins and RNA in complex networks associated with mRNA splicing, chromatin structure, transcription, cell cycle and cell structure. A precise and tight regulation of their function is achieved through phosphorylation of a number of serine residues within the SR/RS motifs by the Serine-Arginine protein kinases (SRPKs) that lead to delicate structural alterations.
View Article and Find Full Text PDFSRPK1 is an evolutionary conserved protein kinase that specifically phosphorylates its substrates at serine residues located within arginine-serine-rich (RS) domains. We have previously reported the existence of a second less abundant isoform in humans, SRPK1a, which is formed from alternative splicing of the gene and contains an insertion of 171 amino acids at its N-terminal domain (Nikolakaki et al., 2001).
View Article and Find Full Text PDFUnlabelled: Lamin B Receptor (LBR) is an integral protein of the interphase inner nuclear membrane that is implicated in chromatin anchorage to the nuclear envelope. Phosphorylation of a stretch of arginine-serine (RS) dipeptides in the amino-terminal nucleoplasmic domain of LBR regulates the interactions of the receptor with other nuclear proteins, DNA and RNA and thus modulates tethering of heterochromatin to the nuclear envelope. While phosphorylation has been extensively studied, very little is known about other post-translational modifications of the protein.
View Article and Find Full Text PDFLamin B receptor (LBR) is an integral protein of the inner nuclear membrane, containing a hydrophilic -terminal end protruding into the nucleoplasm, eight hydrophobic segments that span the membrane and a short, nucleoplasmic -terminal tail. Two seemingly unrelated functions have been attributed to LBR. Its -terminal domain tethers heterochromatin to the nuclear periphery, thus contributing to the shape of interphase nuclear architecture, while its transmembrane domains exhibit sterol reductase activity.
View Article and Find Full Text PDFSerine/arginine protein kinases (SRPKs) phosphorylate Arg/Ser dipeptide-containing proteins that play crucial roles in a broad spectrum of basic cellular processes. The existence of a large internal spacer sequence that separates the bipartite kinase catalytic core is a unique structural feature of SRPKs. Previous structural studies on a catalytically active fragment of SRPK1, which lacks the main part of the spacer domain, revealed that SRPK1 remains in an active state without any post-translational modifications or specific intra-protein interactions, while the spacer domain is depicted as a loop structure, outside the kinase core.
View Article and Find Full Text PDFThe first total synthesis of the antimicrobial natural product lynamicin D has been developed using a Suzuki coupling to construct the bisindole pyrrole skeleton. An evaluation of the biological activity of lynamicin D reveals that it has a minor effect on cell viability but it can modulate splicing of pre-mRNAs. We provide evidence that this effect is mainly due to the ability of lynamicin D to alter the levels of SRPK1, the key kinase involved in both constitutive and alternative splicing.
View Article and Find Full Text PDFActivated Akt has been previously implicated in acting on RS domain-containing proteins. However, it has been questioned whether its action is direct or it is mediated by co-existing SR kinase activity. To address this issue we studied in detail the phosphorylation of Lamin B Receptor (LBR) by Akt.
View Article and Find Full Text PDFAmong factors regulating the splicing of major importance is serine/arginine protein kinase 1 (SRPK1) that phosphorylates SR splicing factors. SRPK1 is expressed in the mammalian central nervous system in a region- and neuron-specific manner. Based on previous observations that glial cells are practically devoid of SRPK1 and reports showing aberrant expression of SRPK1 in numerous tumors, but with conflicting roles, this study aims to investigate the expression of SRPK1 in glioma and its influence on tumor cell biological features.
View Article and Find Full Text PDFZona occludens 2 (ZO-2) has a dual localization. In confluent epithelia, ZO-2 is present at tight junctions (TJs), whereas in sparse proliferating cells it is also found at the nucleus. Previously we demonstrated that in sparse cultures, newly synthesized ZO-2 travels to the nucleus before reaching the plasma membrane.
View Article and Find Full Text PDFA common genetic polymorphism of the α2b-adrenergic receptor (ADRA2B) resulting in a deletion of three glutamic acids located on the third intracellular loop of the protein, has been associated with memory formation enhanced by emotional events. Additionally, there are several studies documenting the involvement of this polymorphism in other types of cognition, such as episodic memory. The aim of this study was to investigate the possible relationship of this genetic variance with a common memory affecting disease, Alzheimer's disease.
View Article and Find Full Text PDFBackground: Arginine/serine (RS) repeats are found in several proteins in metazoans with a wide variety of functions, many of which are regulated by SR protein kinase 1 (SRPK1)-mediated phosphorylation. Lamin B receptor (LBR) is such a protein implicated in chromatin anchorage to the nuclear envelope.
Methods: Molecular dynamics simulations were used to investigate the conformation of two LBR peptides containing four (human-) and five (turkey-orthologue) consecutive RS dipeptides, in their unphosphorylated and phosphorylated forms and of a conserved peptide, in isolation and in complex with SRPK1.
Autoantibodies targeting specific cellular antigens are often present in sera and cerebrospinal fluids (CSFs) of patients with Alzheimer's disease (AD) and could play a role in the onset and/or progression of the disease. In this study we identified SR Protein Kinase 1 (SRPK1) as a new autoantigen elevated in AD. SRPK1, the prototype of the serine/arginine family of kinases, has been implicated in the regulation of multiple cellular processes such as pre-mRNA splicing, cell proliferation, chromatin structure, nuclear import and germ cell development.
View Article and Find Full Text PDFSerine-arginine protein kinases (SPRKs) constitute a relatively novel subfamily of serine-threonine kinases that specifically phosphorylate serine residues residing in serine-arginine/arginine-serine dipeptide motifs. Fifteen years of research subsequent to the purification and cloning of human SRPK1 as a SR splicing factor-phosphorylating protein have lead to the accumulation of information on the function and regulation of the different members of this family, as well as on the genomic organization of SRPK genes in several organisms. Originally considered to be devoted to constitutive and alternative mRNA splicing, SRPKs are now known to expand their influence to additional steps of mRNA maturation, as well as to other cellular activities, such as chromatin reorganization in somatic and sperm cells, cell cycle and p53 regulation, and metabolic signalling.
View Article and Find Full Text PDFA significant amount of nuclear p53 is found associated with the nuclear matrix in cells that were exposed to genotoxic stress. In this study we identified Scaffold attachment factor B1 (SAFB1), a nuclear matrix-associated protein that binds the scaffold or matrix attachment regions (S/MARs) of genomic DNA, as a novel p53-interacting protein. SAFB1 was able to associate with p53 through its C-terminal domain, while significant co-localization of the two proteins was observed in cells treated with 5-fluorouracil or mithramycin.
View Article and Find Full Text PDFBackground: The 250 kDa P2P-R protein (also known as PACT and Rbbp6) was cloned over a decade ago and was found to bind both the p53 and Rb1 tumor suppressor proteins. In addition, P2P-R has been associated with multiple biological functions, such as mitosis, mRNA processing, translation and ubiquitination. In the current studies, the online GeneNetwork system was employed to further probe P2P-R biological functions.
View Article and Find Full Text PDFSR protein kinases (SRPKs) phosphorylate Ser/Arg dipeptide-containing proteins that play crucial roles in a broad spectrum of basic cellular processes. Phosphorylation by SRPKs constitutes a major way of regulating such cellular mechanisms. In the past, we have shown that SRPK1a interacts with the nuclear matrix protein scaffold attachment factor B1 (SAFB1) via its unique N-terminal domain, which differentiates it from SRPK1.
View Article and Find Full Text PDFBackground Aims: Chronic lymphocytic leukemia (CLL) is an indolent disease. It is currently recommended that patients with CLL stages 0 and I follow a watchful waiting strategy. These patients are, therefore, a suitable group for testing immunotherapeutic approaches to avoid problems of immunosuppression as a result of disease progression and chemotherapy.
View Article and Find Full Text PDFEarly chronic lymphocytic leukaemia (CLL) is an ideal disease for immunotherapy. We previously showed that SEMG 1 is a cancer-testis (CT) antigen in CLL. In this study, SEMG 1 was applied as the bait in a yeast two-hybrid system of a testicular cDNA library.
View Article and Find Full Text PDFDomains rich in alternating arginine and serine residues (RS domains) are found in a large number of eukaryotic proteins involved in several cellular processes. According to the prevailing view RS domains function as protein interaction domains, thereby promoting the assembly of higher-order cellular structures. Furthermore, recent data demonstrated that the RS regions of several SR splicing factors directly contact the pre-mRNA in a nonsequence specific but functionally important fashion.
View Article and Find Full Text PDF