Climate means and variability are shifting rapidly, leading to mismatches between climate and locally adapted plant traits. Phenotypic plasticity, the ability of a plant to respond to environmental conditions within a lifetime, may provide a buffer for plants to persist under increasing temperature and water stress. We used two reciprocal common gardens across a steep temperature gradient to investigate plasticity in six populations of Fremont cottonwood, an important foundation tree species in arid riparian ecosystems.
View Article and Find Full Text PDFPlant Cell Environ
November 2024
Proc Natl Acad Sci U S A
October 2024
Increasing heatwaves are threatening forest ecosystems globally. Leaf thermal regulation and tolerance are important for plant survival during heatwaves, though the interaction between these processes and water availability is unclear. Genotypes of the widely distributed foundation tree species were studied in a controlled common garden during a record summer heatwave-where air temperature exceeded 48 °C.
View Article and Find Full Text PDFPopulus fremontii is among the most dominant, and ecologically important riparian tree species in the western United States and can thrive in hyper-arid riparian corridors. Yet, P. fremontii forests have rapidly declined over the last decade, particularly in places where temperatures sometimes exceed 50°C.
View Article and Find Full Text PDFPremise: Riparian plants can exhibit intraspecific phenotypic variability across the landscape related to temperature and flooding gradients. Phenotypes that vary across a climate gradient are often partly genetically determined and may differ in their response to inundation. Changes to inundation patterns across a climate gradient could thus result in site-specific inundation responses.
View Article and Find Full Text PDFSelection on quantitative traits by heterogeneous climatic conditions can lead to substantial trait variation across a species range. In the context of rapidly changing environments, however, it is equally important to understand selection on trait plasticity. To evaluate the role of selection in driving divergences in traits and their associated plasticities within a widespread species, we compared molecular and quantitative trait variation in Populus fremontii (Fremont cottonwood), a foundation riparian distributed throughout Arizona.
View Article and Find Full Text PDFClimate change is threatening the persistence of many tree species via independent and interactive effects on abiotic and biotic conditions. In addition, changes in temperature, precipitation, and insect attacks can alter the traits of these trees, disrupting communities and ecosystems. For foundation species such as Populus, phytochemical traits are key mechanisms linking trees with their environment and are likely jointly determined by interactive effects of genetic divergence and variable environments throughout their geographic range.
View Article and Find Full Text PDFThe relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged.
View Article and Find Full Text PDFA key issue in evolutionary biology is whether selection acting at levels higher than the individual can cause evolutionary change. If it can, then conceptual and empirical studies must consider how selection operates at multiple levels of biological organization. Here, we test the hypothesis that estimates of broad-sense community heritability, , can be used to predict the evolutionary response by community-level phenotypes when community-level selection is imposed.
View Article and Find Full Text PDFLeaf carbon gain optimization in hot environments requires balancing leaf thermoregulation with avoiding excessive water loss via transpiration and hydraulic failure. The tradeoffs between leaf thermoregulation and transpirational water loss can determine the ecological consequences of heat waves that are increasing in frequency and intensity. We evaluated leaf thermoregulation strategies in warm- (>40°C maximum summer temperature) and cool-adapted (<40°C maximum summer temperature) genotypes of the foundation tree species, Populus fremontii, using a common garden near the mid-elevational point of its distribution.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2022
Tree fecundity and recruitment have not yet been quantified at scales needed to anticipate biogeographic shifts in response to climate change. By separating their responses, this study shows coherence across species and communities, offering the strongest support to date that migration is in progress with regional limitations on rates. The southeastern continent emerges as a fecundity hotspot, but it is situated south of population centers where high seed production could contribute to poleward population spread.
View Article and Find Full Text PDFGenetic variation in foundation tree species can strongly influence communities of trophic-dependent organisms, such as herbivorous insects, pollinators, and mycorrhizal fungi. However, the extent and manner in which this variation results in unexpected interactions that reach trophic-independent organisms remains poorly understood, even though these interactions are essential to understanding complex ecosystems. In pinyon-juniper woodland at Sunset Crater (Arizona, USA), we studied pinyon (Pinus edulis) that were either resistant or susceptible to stem-boring moths (Dioryctria albovittella).
View Article and Find Full Text PDFDespite its importance for forest regeneration, food webs, and human economies, changes in tree fecundity with tree size and age remain largely unknown. The allometric increase with tree diameter assumed in ecological models would substantially overestimate seed contributions from large trees if fecundity eventually declines with size. Current estimates are dominated by overrepresentation of small trees in regression models.
View Article and Find Full Text PDFEfforts to maintain the function of critical ecosystems under climate change often begin with foundation species. In the southwestern United States, cottonwood trees support diverse communities in riparian ecosystems that are threatened by rising temperatures. Genetic variation within cottonwoods shapes communities and ecosystems, but these effects may be modified by phenotypic plasticity, where genotype traits change in response to environmental conditions.
View Article and Find Full Text PDFIndirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size.
View Article and Find Full Text PDFEcological niche models (ENMs) have classically operated under the simplifying assumptions that there are no barriers to gene flow, species are genetically homogeneous (i.e., no population-specific local adaptation), and all individuals share the same niche.
View Article and Find Full Text PDFSeveral studies have demonstrated the ecological consequences of genetic variation within a single plant species. For example, these studies show that individual plant genotypes support unique composition of the plants' associated arthropod community. By contrast, fewer studies have explored how plant genetic variation may influence evolutionary dynamics in the plant's associated species.
View Article and Find Full Text PDF(Fremont cottonwood) is recognized as one of the most important foundation tree species in the southwestern USA and northern Mexico because of its ability to structure communities across multiple trophic levels, drive ecosystem processes and influence biodiversity via genetic-based functional trait variation. However, the areal extent of cover has declined dramatically over the last century due to the effects of surface water diversions, non-native species invasions and more recently climate change. Consequently, gallery forests are considered amongst the most threatened forest types in North America.
View Article and Find Full Text PDFSuccessive droughts have resulted in extensive tree mortality in the southwestern United States. Recovery of these areas is dependent on the survival and recruitment of young trees. For trees that rely on ectomycorrhizal fungi (EMF) for survival and growth, changes in soil fungal communities following tree mortality could negatively affect seedling establishment.
View Article and Find Full Text PDFWorldwide, trees are confronting increased temperature and aridity, exacerbating susceptibility to herbivory. Long-term studies comparing patterns of plant performance through drought can help identify variation among and within populations in vulnerability to climate change and herbivory. We use long-term monitoring data to examine our overarching hypothesis that the negative impacts of poor soil and herbivore susceptibility would be compounded by severe drought.
View Article and Find Full Text PDFUnderstanding how genetic-based traits of plants interact with climate to affect associated communities will help improve predictions of climate change impacts on biodiversity. However, few community-level studies have addressed such interactions. Pinyon pine () in the southwestern U.
View Article and Find Full Text PDFInsect galls are highly specialized structures arising from atypical development of plant tissue induced by insects. Galls provide the insect enhanced nutrition and protection against natural enemies and environmental stresses. Galls are essentially plant organs formed by an intimate biochemical interaction between the gall-inducing insect and its host plant.
View Article and Find Full Text PDF