Ultrasound shear wave elastography can be used to characterize mechanical properties of unstressed tissue by measuring shear wave velocity (SWV), which increases with increasing tissue stiffness. Measurements of SWV have often been assumed to be directly related to the stiffness of muscle. Some have also used measures of SWV to estimate stress, since muscle stiffness and stress covary during active contractions, but few have considered the direct influence of muscle stress on SWV.
View Article and Find Full Text PDFClinical assessments for many musculoskeletal disorders involve evaluation of muscle stiffness, although it is not yet possible to obtain quantitative estimates from individual muscles. Ultrasound elastography can be used to estimate the material properties of unstressed, homogeneous, and isotropic materials by tracking the speed of shear wave propagation; these waves propagate faster in stiffer materials. Although elastography has been applied to skeletal muscle, there is little evidence that shear wave velocity (SWV) can directly estimate muscle stiffness since this tissue violates many of the assumptions required for there to be a direct relationship between SWV and stiffness.
View Article and Find Full Text PDFImproper activation of the quadriceps muscles vastus medialis (VM) and vastus lateralis (VL) has been implicated in the development of patellofemoral pain (PFP). This explanation of PFP assumes that VM and VL produce opposing mediolateral forces on the patella. Although studies have provided evidence for opposing actions of VM and VL on the patella, other studies have suggested that their actions might be similar.
View Article and Find Full Text PDFObjective: The goal of this study was to develop a physiologically plausible, computationally robust model for muscle activation dynamics (A(t)) under physiologically relevant excitation and movement.
Approach: The interaction of excitation and movement on A(t) was investigated comparing the force production between a cat soleus muscle and its Hill-type model. For capturing A(t) under excitation and movement variation, a modular modeling framework was proposed comprising of three compartments: (1) spikes-to-[Ca(2+)]; (2) [Ca(2+)]-to-A; and (3) A-to-force transformation.
Passive properties of muscles and tendons, including their elasticity, have been suggested to influence motor control. We examine here the potential role of passive elastic muscle properties at the rat ankle joint, focusing on their potential to specify an equilibrium position of the ankle. We measured the position-dependent passive torques at the rat ankle before and after sequential cuts of flexor (a.
View Article and Find Full Text PDFAlthough musculoskeletal models are commonly used, validating the muscle actions predicted by such models is often difficult. In situ isometric measurements are a possible solution. The base of the skeleton is immobilized and the endpoint of the limb is rigidly attached to a 6-axis force transducer.
View Article and Find Full Text PDFMusculoskeletal models are often created by making detailed anatomical measurements of muscle properties. These measurements can then be used to determine the parameters of canonical models of muscle action. We describe here a complementary approach for developing and validating muscle models, using in situ measurements of muscle actions.
View Article and Find Full Text PDFJ Biomed Biotechnol
July 2010
The classic view of skeletal muscle is that force is generated within its muscle fibers and then directly transmitted in-series, usually via tendon, onto the skeleton. In contrast, recent results suggest that muscles are mechanically connected to surrounding structures and cannot be considered as independent actuators. This article will review experiments on mechanical interactions between muscles mediated by such epimuscular myofascial force transmission in physiological and pathological muscle conditions.
View Article and Find Full Text PDFRecent experiments to characterize the short-range stiffness (SRS)-force relationship in several cat hindlimb muscles suggested that the there are differences in the tendon elastic moduli across muscles [Cui, L., Perreault, E.J.
View Article and Find Full Text PDFMed Sci Sports Exerc
January 2009
Muscle force can be transmitted via connective tissues to neighboring muscles. The goal of this research is to determine the extent to which this effects force summation between synergists during physiological conditions. This manuscript reviews two studies examining the interaction between synergists in cat hindlimb.
View Article and Find Full Text PDFThe short-range stiffness (SRS) of skeletal muscles is a critical property for understanding muscle contributions to limb stability, since it represents a muscle's capacity to resist external perturbations before reflexes or voluntary actions can intervene. A number of studies have demonstrated that a simple model, consisting of a force-dependent active stiffness connected in series with a constant passive stiffness, is sufficient to characterize the SRS of individual muscles over the entire range of obtainable forces. The purpose of this study was to determine if such a model could be used to characterize the SRS-force relationship in a number of architecturally distinct muscles.
View Article and Find Full Text PDFJ Appl Physiol (1985)
June 2008
It is unclear if skeletal muscles act mechanically as independent actuators. The purpose of the present study was to investigate force transmission from soleus (SO) muscle for physiological lengths as well as relative positions in the intact cat hindlimb. We hypothesized that force transmission from SO fibers will be affected by length changes of its two-joint synergists.
View Article and Find Full Text PDFJ Appl Physiol (1985)
September 2007
Studies on skinned fibers and single motor units have indicated that slow-twitch fibers are stiffer than fast-twitch fibers. This suggests that skeletal muscles with different motor unit compositions may have different short-range stiffness (SRS) properties. Furthermore, the natural recruitment of slow before fast motor units may result in an SRS-force profile that is different from electrical stimulation.
View Article and Find Full Text PDFRack and Westbury showed that low-frequency asynchronous stimulation of a muscle produces greater force compared with synchronous stimulation. This study tested the hypothesis that the difference results from the dynamic stretch of the common elastic elements. In eight anesthetized cats, the soleus was attached to a servomechanism to control muscle length and record force.
View Article and Find Full Text PDFNonlinear summation of force has been observed between motor units. The complex structure of muscle suggests many reasons why this could happen. When large portions of the muscle are active, however, the nonlinearities are small, and generally explained by stretch of the common elasticity.
View Article and Find Full Text PDFNearly all muscle models and most motor control concepts assume that forces from individual muscle fibers and motor units sum in an additive manner once effects of in-series tendon compliance are taken into account. Due to the numerous mechanical linkages between individual fibers, though, it is unclear whether this assumption is warranted. This work examined motor unit force summation over a wide range of muscle forces in the cat soleus.
View Article and Find Full Text PDFThis study evaluated the accuracy of Hill-type muscle models during movement. Hill-type models are ubiquitous in biomechanical simulations. They are attractive because of their computational simplicity and close relation to commonly measured experimental variables, but there have been surprisingly few experimental validations of these models during functionally relevant conditions.
View Article and Find Full Text PDFThe complex connective tissue structure of muscle and tendon suggests that forces from two parts of a muscle may not summate linearly, particularly in muscles with intrafasciculary terminating fibers, such as cat tibialis anterior (TA). In four anesthetized cats, the TA was attached to a servomechanism to control muscle length and record force. The ventral roots were divided into two bundles, each innervating about half the TA, so the two parts could be stimulated alone or together.
View Article and Find Full Text PDF