Publications by authors named "Thomas G Ruff"

ATHB17 (AT2G01430) is an Arabidopsis gene encoding a member of the α-subclass of the homeodomain leucine zipper class II (HD-Zip II) family of transcription factors. The ATHB17 monomer contains four domains common to all class II HD-Zip proteins: a putative repression domain adjacent to a homeodomain, leucine zipper, and carboxy terminal domain. However, it also possesses a unique N-terminus not present in other members of the family.

View Article and Find Full Text PDF

Previous studies have demonstrated that Arabidopsis thaliana BBX32 (AtBBX32) represses light signaling in A. thaliana and that expression of AtBBX32 in soybean increases grain yield in multiple locations and multiyear field trials. The BBX32 protein is a member of the B-box zinc finger family from A.

View Article and Find Full Text PDF

Crop yield is a highly complex quantitative trait. Historically, successful breeding for improved grain yield has led to crop plants with improved source capacity, altered plant architecture, and increased resistance to abiotic and biotic stresses. To date, transgenic approaches towards improving crop grain yield have primarily focused on protecting plants from herbicide, insects, or disease.

View Article and Find Full Text PDF

BROTHER OF LUX ARRHYTHMO (BOA) is a GARP family transcription factor in Arabidopsis thaliana and is regulated by circadian rhythms. Transgenic lines that constitutively overexpress BOA exhibit physiological and developmental changes, including delayed flowering time and increased vegetative growth under standard growing conditions. Arabidopsis circadian clock protein CIRCADIAN CLOCK ASSOCIATED1 (CCA1) binds to the evening element of the BOA promoter and negatively regulates its expression.

View Article and Find Full Text PDF

Treating messenger RNA transcript abundances as quantitative traits and mapping gene expression quantitative trait loci for these traits has been pursued in gene-specific ways. Transcript abundances often serve as a surrogate for classical quantitative traits in that the levels of expression are significantly correlated with the classical traits across members of a segregating population. The correlation structure between transcript abundances and classical traits has been used to identify susceptibility loci for complex diseases such as diabetes and allergic asthma.

View Article and Find Full Text PDF