Most fungi that grow on damp building materials produce low molecular weight compounds, some of which are known to be toxic. In this study, we tested the hypothesis that exposure to some metabolites of fungi common on damp building materials would result in time-, dose-, and compound-specific responses in the production of various chemokines by RAW 264.7 cells.
View Article and Find Full Text PDFPeople living in damp buildings are typically exposed to spore and mycelial fragments of the fungi that grow on damp building materials. There is experimental evidence that this exposure to triple-helical (1, 3)-β-D glucan and low molecular weight toxins may be associated with non-atopic asthma observed in damp and moldy buildings. However, the mechanisms underlying this response are only partially resolved.
View Article and Find Full Text PDFThe inflammatory potential and molecular mechanisms underscoring inflammatory responses of lung cells to compounds from fungi that grow on damp building materials is poorly understood in vitro. In this study we evaluated the effect of pure fungal compounds on potentiating acute inflammatory response in primary mouse alveolar macrophages (AMs) and tested the hypothesis that AM responses to low molecular weight fungal compounds exhibit temporal and compound specificity that mimic that observed in the whole lung. Transcriptional responses of 13 inflammation/respiratory burst-associated genes (KC=Cxcl1, Cxcl2, Cxcl5, Cxcl10, Ccl3, Ccl112, Ccl20, IL-1β, Il-6, ifi27 Tnfα, iNOS and Blvrb) were evaluated in mouse AMs exposed to a 1ml (10(-8)mol) dose of either pure atranone C, brevianimide, cladosporin, curdlan, LPS, neoechinulin A & B, sterigmatocystin or TMC-120A for 2h, 4h and 12h PE using customized reverse transcription (RT)-PCR based arrays.
View Article and Find Full Text PDFThe form of (1-3)-beta-D glucan found in the cell walls of the anamorphic Trichocomaceae that grow on damp building materials is considered to have potent toxic and inflammatory effects on cells of the respiratory system. It is also considered to have a potential role in the development of non-allergenic respiratory health effects. While human studies involving experimental exposures all point to the inflammatory potential of pure curdlan, a linear (1-3)-beta-D glucan in a triple helix configuration, animal experiments result in conflicting conclusions concerning the inflammatory potency of this glucan.
View Article and Find Full Text PDFThe purpose of this study was to evaluate the distribution of a 34 kD antigen isolated from S. chartarum sensu lato in spores and in the mouse lung 48 h after intra-tracheal instillation of spores by immuno-histochemistry. This antigen was localized in spore walls, primarily in the outer and inner wall layers and on the external wall surfaces with modest labelling observed in cytoplasm.
View Article and Find Full Text PDFStachybotrys chartarum isolates can be separated into two distinct chemotypes based on the toxins they produce. One chemotype produces macrocyclic trichothecenes; the other produces atranones (and sometimes simple trichothecenes, e.g.
View Article and Find Full Text PDFFEMS Microbiol Ecol
August 2005
This study provides observations on the effects of lead and cadmium ions on the growth of two species of marine fungi, Corollospora lacera and Monodictys pelagica. On solid media lead appeared to have no effect on the radial rate of growth of fungi. Exposure to increasing cadmium concentrations on solid media resulted in significant reduction (p < 0.
View Article and Find Full Text PDFIn vitro and in vivo studies have shown that building-associated Penicillium spores and spore extracts can induce significant inflammatory responses in lung cells and animal models of lung disease. However, because spores and spore extracts comprise mixtures of bioactive constituents often including toxins, it is impossible to resolve which constituent mediates inflammatory responses. This study examined dose-response (0.
View Article and Find Full Text PDFStachybotrys chartarum has been linked to building-related respiratory problems including pulmonary hemorrhage in infants. The macrocyclic trichothecenes produced by S. chartarum have been the primary focus of many investigations.
View Article and Find Full Text PDFSatratoxin-G (SG) is the major macrocyclic trichothecene mycotoxin produced by Stachybotrys chartarum (atra) and has been implicated as a cause of a number of animal and human health problems including pulmonary hemorrhage in infants. However, there is little understanding where this toxin is localized in the spores and mycelial fragments of this species or in the lung impacted by SG-sequestered spores. The purpose of this study was to evaluate the distribution of SG in S.
View Article and Find Full Text PDFIchthyosporea is a recently recognized group of morphologically simple eukaryotes, many of which cause disease in aquatic organisms. Ribosomal RNA sequence analyses place Ichthyosporea near the divergence of the animal and fungal lineages, but do not allow resolution of its exact phylogenetic position. Some of the best evidence for a specific grouping of animals and fungi (Opisthokonta) has come from elongation factor 1alpha, not only phylogenetic analysis of sequences but also the presence or absence of short insertions and deletions.
View Article and Find Full Text PDFThis is a review of the literature of associations of the saprotrophic fungus Stachybotrys chartarum sensu lato with human and animal illnesses. This fungus grows on very wet cellulose-based building materials. S.
View Article and Find Full Text PDF