The production, mobilization and fluvial transport of dissolved organic carbon (DOC) in temperate forests are important components of the carbon cycle that are influenced by ongoing changes in climate. Numerous studies have reported temporal trends in stream water DOC concentrations and have attributed changes in concentrations to climatic and hydrologic variables. Fewer studies have reported trends in concentration-discharge (C-Q) relations for DOC.
View Article and Find Full Text PDFThe mobilization and transport of organic carbon (OC) in rivers and delivery to the near-coastal ocean are important processes in the carbon cycle that are affected by both climate and anthropogenic activities. Riverine OC transport can affect carbon sequestration, contaminant transport, ocean acidification, the formation of toxic disinfection by-products, ocean temperature and phytoplankton productivity. There have been many studies reporting temporal trends in OC concentrations in comparatively small streams with minimal anthropogenic influences but there have been fewer studies on larger rivers and fewer still that have investigated changes in OC concentration-discharge (C-Q) relations.
View Article and Find Full Text PDFThe timing of recurring biological and seasonal environmental events is changing on a global scale relative to temperature and other climate drivers. This study considers the Gulf of Maine ecosystem, a region of high social and ecological importance in the Northwest Atlantic Ocean and synthesizes current knowledge of (a) key seasonal processes, patterns, and events; (b) direct evidence for shifts in timing; (c) implications of phenological responses for linked ecological-human systems; and (d) potential phenology-focused adaptation strategies and actions. Twenty studies demonstrated shifts in timing of regional marine organisms and seasonal environmental events.
View Article and Find Full Text PDFWetlands are hotspots for production of toxic methylmercury (MeHg) that can bioaccumulate in the food web. The objective of this study was to determine whether the application of zero-valent iron (ZVI) or granular activated carbon (GAC) to wetland sediment could reduce MeHg production and bioavailability to benthic organisms. Field mesocosms were installed in a wetland fringing Hodgdon Pond (Maine, USA), and ZVI and GAC were applied.
View Article and Find Full Text PDFUsing fluorescence spectroscopy and parallel factor analysis (PARAFAC) we characterized and modeled the fluorescence properties of dissolved organic matter (DOM) in samples from the Penobscot River, Androscoggin River, Penobscot Bay, and the Gulf of Maine (GoM). We analyzed excitation-emission matrices (EEMs) using an existing PARAFAC model (Cory and McKnight, 2005) and created a system-specific model with seven components (GoM PARAFAC). The GoM PARAFAC model contained six components similar to those in other PARAFAC models and one unique component with a spectrum similar to a residual found using the Cory and McKnight (2005) model.
View Article and Find Full Text PDF